1) metal foam heat sink
泡沫金属散热器
1.
This paper designs and establishes the experimental setup to determine the performance in metal foam heat sink for chips cooling.
本文设计并搭建了用于芯片散热的泡沫金属散热器性能测试的实验装置系统,对空气流过泡沫金属散热器的对流换热进行了实验研究,所研究的泡沫金属为孔隙率为90%、孔密度为10PPI和30PPI的泡沫铝。
2) metal foam arrester
泡沫金属阻火器
3) metal foam
泡沫金属
1.
Current density control for preparation of metal foam by electrodeposition;
电沉积法制备高孔率泡沫金属的电流密度控制
2.
Analysis of porous open-cell metal foams under uniaxial and biaxial loadings;
泡沫金属在单双向拉压载荷作用下的表征分析
3.
The Mechanical Property and Progress of metal foams;
泡沫金属的力学性能及研究进展
4) metal foam
金属泡沫
1.
Numerical simulation on compressive yielding behavior of closed-cell metal foam with low density
低密度闭孔金属泡沫压缩屈服行为的数值模拟
2.
Fluid flow and heat transfer characteristics in ultra-light porous metal foam
流体在超轻多孔金属泡沫中的流动和换热特性
3.
, corrugated plate, honeycomb plate and kagome plate, each of which is filled with metal foam or ceramic.
研究了不同的填充材料(金属泡沫和陶瓷)分别填充到不同的格栅构型(波纹型、蜂窝型和加强六边形)夹层板后,各类夹层板受到金属泡沫子弹和不锈钢子弹冲击时变形与能量吸收特性,探讨了夹层板上下面层板、支撑格栅及填充材料等各部分的吸能比率。
5) metal foams
泡沫金属
1.
Research progress of open cell metal foams used in compact heat exchanger;
开孔泡沫金属用于紧凑型热交换器的研究进展
2.
The thermal conductivity of a new type of phase change material storage with high porosity metal foams is higher than the thermal conductivity of the phase change material itself, and the composite performs much better on heat transfer.
以高孔隙率泡沫金属材料作为骨架制备而成的新型复合相变储能材料的导热系数将大大高于相变材料本身的导热系数,在储能过程中具有更好的传热效果。
3.
Based on the relationship between biaxial nominal loading strength and porosity of three-dimensional reticulated metal foams, the biaxial equal-stress tensile loading situation is analyzed for these materials, and the mechanical behavior is investigated for metal foams failing under this situation.
在已有的泡沫金属双向名义载荷强度与孔隙率关系的基础上,分析了该材料的双向等应力拉伸加载情形,探讨了泡沫金属在该情形下发生破坏的力学行为。
6) metallic foams
泡沫金属
1.
Review of mechanical properties of metallic foams;
泡沫金属的力学性能研究综述
2.
An in situ observation method in the mesoscopic scale was proposed for porous metallic foams.
针对多孔泡沫金属材料提出一种细观原位加载实验方法,采用特别设计与制备的试件,在S570扫描电镜下研究了特定胞孔在压缩过程中孔壁的失效顺序和破坏规律,并揭示了能量吸收的细观机理。
3.
In this paper, finite element simulations are carried out for cone indentation of metallic foams with 80 different material parameters.
在理论研究的基础上,将泡沫金属压痕试验的有限元数值模拟结果与用无量纲分析法构造出的一系列无量纲函数相结合,建立了泡沫金属压痕试验中载荷-压痕深度关系曲线与泡沫金属的弹塑性材料参数之间的联系。
补充资料:谈散热器恒温阀的原理及应用
散热器恒温阀(Radiator Thermostat,又称温控阀、恒温器等)安装在每台 散热器的进水管上,用户可根据对室温高低的要求,调节并设定室温。按其工作原理,恒温阀属于比例控制器,即根据室温与恒温阀设定值的偏差,比例地、平稳地打开或关闭阀门。阀门的开度保持在相当于需求负荷位置处,其供水量与室温保持稳定。相对于某一设定值时恒温阀从全开到全关位置的室温变化范围称之为恒温阀的比例带,通常比例带为0.5~2.0℃。
按设恒温阀的目地,是使用户可以自行调节室温,同时当室内有“自由热”时,恒温阀能自行调节进水量,保持室温恒定,不仅提高室内舒适度,而且节能。
散热器恒温阀实现了用户能自行调节室温,热量分配表配合热表,或一户为一个系统安置户用热表,可以推算出每户实际耗热量,这是按热量收费必不可少的设备。但对于双管系统来说,由于按设了散热器恒温阀,采暖系统呈现出变水量的特点。如果水泵运行工况不变,当系统中某些环路的恒温阀关小时,会引起一些环路上恒温阀承受的压差增高,恶化了控制性能;从另一方面来说,系统总水量需求减少,可以应用(变频)调速水泵节省水泵的电耗。
恒温阀工作原理
恒温阀的核心部件是传感器,即温包。根据温包位置区分,恒温控制器有温包内置和温包外置(远程式)两种形式,温度设置也有两种形式,可以按照其窗口显示来设定所要求的控制温度,并加以自动控制。温包内充有感温介质,能够感应环境温度,随感应温度的变化产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的通过水量来改变散热器的散热量。当室温升高时,感温介质吸热膨胀,关小阀门的开度,减少了流入散热器的水量,降低散热量以控制室温。当室温降低时,感温介质放热收缩,阀芯被弹簧推回而使阀门开度变大,增加流经散热器水量,恢复室温恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的热水供应。
散热器恒温阀的安装位置
散热器恒温阀安装在每台散热器的进水管上或分户采暖系统的总入口进水管上。散热器恒温阀的安装问题很重要:内置式传感器不主张垂直安装,因为阀体和表面管道的热效应也许会导致恒温控制器的错误动作,应确保恒温阀的传感器能够感应到室内环流空气的温度,不得被窗帘盒、暖气罩等覆盖。
按设恒温阀的目地,是使用户可以自行调节室温,同时当室内有“自由热”时,恒温阀能自行调节进水量,保持室温恒定,不仅提高室内舒适度,而且节能。
散热器恒温阀实现了用户能自行调节室温,热量分配表配合热表,或一户为一个系统安置户用热表,可以推算出每户实际耗热量,这是按热量收费必不可少的设备。但对于双管系统来说,由于按设了散热器恒温阀,采暖系统呈现出变水量的特点。如果水泵运行工况不变,当系统中某些环路的恒温阀关小时,会引起一些环路上恒温阀承受的压差增高,恶化了控制性能;从另一方面来说,系统总水量需求减少,可以应用(变频)调速水泵节省水泵的电耗。
恒温阀工作原理
恒温阀的核心部件是传感器,即温包。根据温包位置区分,恒温控制器有温包内置和温包外置(远程式)两种形式,温度设置也有两种形式,可以按照其窗口显示来设定所要求的控制温度,并加以自动控制。温包内充有感温介质,能够感应环境温度,随感应温度的变化产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的通过水量来改变散热器的散热量。当室温升高时,感温介质吸热膨胀,关小阀门的开度,减少了流入散热器的水量,降低散热量以控制室温。当室温降低时,感温介质放热收缩,阀芯被弹簧推回而使阀门开度变大,增加流经散热器水量,恢复室温恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的热水供应。
散热器恒温阀的安装位置
散热器恒温阀安装在每台散热器的进水管上或分户采暖系统的总入口进水管上。散热器恒温阀的安装问题很重要:内置式传感器不主张垂直安装,因为阀体和表面管道的热效应也许会导致恒温控制器的错误动作,应确保恒温阀的传感器能够感应到室内环流空气的温度,不得被窗帘盒、暖气罩等覆盖。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条