1) flame break point

(湍动)火焰转折点
2) Turbulent flame

湍流火焰
1.
An experimental research on the turbulent flame accelelation and the shock induced by turbulent flame in the aluminum dust-air mixture has been made in a large horizontal dust combustion tube.
粉尘湍流火焰诱导激波问题是工业灾害研究中的重要课题。
2.
An analytic method was presented for the three-dimensional movement characteristics of turbulent flames based on a high-speed stereoscopic visualization.
提出了基于高速立体视觉的湍流火焰三维运动特性分析方法,该方法首先利用双视角立体镜,使单个CCD靶面同时获得两个不同角度的火焰图像,通过标定得到摄像机参数,最后基于双目视觉理论的三维重建方法获得火焰内部漩涡结构的三维分布及其扩散速度。
3) torch ignition

火焰点火
4) ignition flame

点火火焰
5) turbulent diffusion flame

湍流扩散火焰
1.
To study the effects of formation rate and surface oxidation reaction on the size of nanoparticle in the turbulent diffusion flame, simulation was performed by using the commercial CFD-code Fluent.
为了更好地研究二氧化钛纳米颗粒合成过程中生成项模型以及表面氧化反应对颗粒尺寸的影响,用CFD商业软件Fluent,对湍流扩散火焰中的颗粒合成过程进行了详细的数值模拟。
2.
To probe into the effects of the interaction of fluid mechanics and particle dynamics in the process of flame synthesis, the simulation of titania nanoparticle synthesis in the turbulent diffusion flame was performed by using the commercial CFD-code FLUENT.
为了解火焰法合成纳米颗粒过程中流体力学和颗粒动力学作用过程,利用CFD商业软件FLUENT模拟了在湍流扩散火焰中合成TiO2纳米颗粒的过程。
3.
Properties of vertical free jet turbulent diffusion flame are studied in a co-axial double channel burner.
计算同轴射流双通道烧嘴的当量直径、Froude数等影响湍流扩散火焰长度的参数,拟合湍流扩散火焰长度的公式。
6) turbulent premixed flame

湍流预混火焰
1.
Fractal Nature of Turbulent Premixed Flame;

湍流预混火焰的分形特性
补充资料:等离子体湍动加速
等离子体的一个最重要特性是不稳定性。微小的扰动就能在等离子体中激起各种等离子体波(或称为等离子体激元)。这种等离子体的激发态通常称为等离子体湍动(见等离子体天体物理学)。湍动元(等离子体波)和荷电粒子碰撞会引起它们之间的能量交换,从而导致粒子加速,这种现象称为等离子体湍动加速。这种加速效应带有统计性质,和经典的费密加速类似。业已证明,等离子体激元和荷电粒子间的碰撞总是导致粒子平均能量的增加。对费密加速的计算表明,粒子的加速率正比于L-1,L是两激元之间的平均距离,也就是两湍动元之间的平均尺度。这种关系是普遍的,并不取决于具体的加速机制。因而湍动元尺度越小,加速效率就越高。在等离子体中,存在各种高频等离子体波,它们的波长是短的,所以,加速效率就比费密加速效率大得多。计算表明,如果太阳缓变射电是由等离子体中的电子振荡波(朗缪尔波)转化来的,那么,这种电子波就能在一天之内把足够多的粒子加速到具有相当于一个耀斑爆发的能量。可见,这种湍动加速效率是非常高的。等离子体湍动加速通常包括两种情况:如果等离子体波的相速度大于粒子的热运动速度,那么,这种等离子体波只能加速少数快粒子,这叫作等离子体纯粹加速;如果波的相速度小于被加速粒子的热运动速度,那么,大多数粒子都能被这种等离子体波加速,这叫作等离子体湍动加热。
对于活动星系核、类星体、脉冲星、蟹状星云等,不管它们的辐射机制如何,为了得到和观测资料一致的结果,总得假定它们的高能粒子数随能量的分布是采取幂指数形式的。正是考虑到等离子体湍动加速效应,才有可能自洽地获得粒子的这种幂律谱。
参考书目
V.N.Tsytovich, Theory of Turbulent Plasma,Consullants Bureau,New York,1977.
对于活动星系核、类星体、脉冲星、蟹状星云等,不管它们的辐射机制如何,为了得到和观测资料一致的结果,总得假定它们的高能粒子数随能量的分布是采取幂指数形式的。正是考虑到等离子体湍动加速效应,才有可能自洽地获得粒子的这种幂律谱。
参考书目
V.N.Tsytovich, Theory of Turbulent Plasma,Consullants Bureau,New York,1977.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条