1) function hazard

函数冒险
2) coefficient of risk

冒险系数
3) data-dependent hazard

数据相关冒险
4) Hyperbolic function of riser

双曲线冒口函数
5) risk function

风险函数
1.
Bayes inference for the loss and risk function of scale parameter estimations;

尺度参数估计的损失函数和风险函数的Bayes推断
2.
The risk function of the quadratic estimate for the covariance matrix Σ under a matrix loss function;
矩阵损失下的协方差阵Σ的二次型估计的风险函数
3.
When the variance was known and the conjugate prior distribution was normal,a Bayes estimation of loss-function and risk function of logarithmic normal distribution was given.
方差已知时,给出共轭先验分布为正态分布下,对数正态分布的损失函数和风险函数的Bayes估计,得到其Bayes估计为保守估计的条件。
6) the hazard function

危险函数
1.
The Bayes estimator is derived under square loss function and empirical Bayes(EB) estimators for the hazard function of exponential distribution in the case of type Ⅱ censored samples are constructed.
对Ⅱ型截尾情形的指数分布在平方损失下获得了其危险函数的Bayes估计,并构造了相应的经验Bayes(EB)估计,证明了所提出的EB估计是渐近最优的。
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条