1) thermoelectric series
温差电序
2) thermoelectric series
温差电序;热电特性表;热电序
3) differential temperature potential
温差电势
1.
This paper studies and analyses the key factors which induce fluctuation of corrosion data measured by electrical resistance probe based on principle of temperature compensation,and it was found that the main factos are contact potential between different metals and differential temperature potential due to the temperature drift.
基于温度补偿的原理,对引起电阻探针腐蚀监测数据波动的关键因素进行了大量研究和分析,发现异种金属间的接触电势和温差电势差,是造成测量数据温度漂移的主要原因。
4) thermopile
[英]['θə:məupail] [美]['θɝmə,paɪl]
温差电堆
1.
The thermopile used to measure infrared energy from body radiation, a medical noncontact thermometer is developed in this paper.
利用温差电堆测量人体辐射的红外能量,研制医用非接触体温计。
2.
A new design of the thin-film thermopile infrared detector with a construction of two sides and TO-5 detector package is given.
介绍一种新设计的薄膜型温差电堆红外探测器。
5) thermoelectric generation
温差发电
1.
The application of thermoelectric generation has been done widely abroad now, but seldom was reported at home.
温差发电是一种合理利用余热、太阳能、地热等低品位能源转换成为电能的有效方式;温差发电具有结构简单、坚固耐用、无运动部件、无噪音等特点,目前在国外已广泛研究,但在我国鲜见相关研究报道;随着温差电材料优值的发展,温差发电的前景非常广阔。
6) thermoelectric
[英]['θə:məui'lektrik] [美][,θɝmoɪ'lɛktrɪk]
温差发电
1.
A basic model of semiconductor thermoelectric generator is constituted.
建立了半导体温差发电器件的基本模型;从稳态的热传导方程出发,对发电器件进行了热力学分析,推导出P型和N型半导体内部的温度分布函数及输出功率和发电效率的表达式;测定了一种Bi-Te-Sb-Se半导体热电材料在低温下的塞贝克系数随温度的变化关系,绘制了曲线并进行数值拟合;结果表明,该种半导体热电材料在低温下性能不佳,需改进配方或生产工艺方可使用。
2.
A new method, which can utilize LNG cold energy by semiconductor thermoelectric (TE) associating with water-electrolytic hydrogen making.
本文重点介绍了一种通过半导体温差发电方法利用LNG冷能并联合电解水制氢的新设想,对该方案进行了深入的理论和实验研究。
补充资料:温差电偶
由两种不同材料的导体连在一起制成的,能产生温差电效应的感温元件,又称热电偶。它是一种温差电式的温度传感器。输出信号是温差电势,可直接送至显示仪表,指示被测对象的温度值。因此它又被归入温度测量仪表。温差电偶的优点是测量范围宽(-200~1600℃),便于远距离测量,精度较高,不需要外附电源,结构简单,使用方便,可适应各种要求(尺寸小,快速和点温测量),是一种常用测温元件。
在图b中,当导体A和B两个接点1和2存在温差,回路中就产生温差电势,这种物理效应称为温差电效应。温差电效应是德国物理学家T.J.塞贝克于1821年发现的,故又称塞贝克效应。温差电偶的感温元件的一端将导体A和B焊接在一起(图a),称为测量端,置于温度为t的被测介质中;另一端称为参比端,处于恒定的温度t0中。当测量端的温度变化时,温差电势即随之变化,在显示仪表上可读出 t的数值。要求测量端材料的物理、化学性能稳定,电阻温度系数小,导电率高,两端的温差电势大。根据测量端材料不同,温差电偶分为难熔金属温差电偶(如钨铼5-钨铼20等)、贵金属温差电偶(如铂铑10-铂、铱铑10-铱等)、廉金属温差电偶(如铁-康铜、镍铬-考铜等)、非金属温差电偶(如二碳化钨-二碳化钼、石墨-碳化硅等)。温差电偶的结构形式,根据用途不同分为4种。①普通温差电偶:多用于工业。②铠装式温差电偶:热惯性小,动态响应快,时间常数可达0.01秒,有良好的柔性,抗震性能好。③薄膜温差电偶:用于壁面温度的快速测量,测温范围在 300℃以下,反应时间为几毫秒。④消耗型温差电偶:测钢水温度的温差电偶,使用一次即焚化,优点是热惯性小。
实际测温时根据被测介质的温度、压力、性质、测温时间长短来选择温差电偶和保护套管。
在图b中,当导体A和B两个接点1和2存在温差,回路中就产生温差电势,这种物理效应称为温差电效应。温差电效应是德国物理学家T.J.塞贝克于1821年发现的,故又称塞贝克效应。温差电偶的感温元件的一端将导体A和B焊接在一起(图a),称为测量端,置于温度为t的被测介质中;另一端称为参比端,处于恒定的温度t0中。当测量端的温度变化时,温差电势即随之变化,在显示仪表上可读出 t的数值。要求测量端材料的物理、化学性能稳定,电阻温度系数小,导电率高,两端的温差电势大。根据测量端材料不同,温差电偶分为难熔金属温差电偶(如钨铼5-钨铼20等)、贵金属温差电偶(如铂铑10-铂、铱铑10-铱等)、廉金属温差电偶(如铁-康铜、镍铬-考铜等)、非金属温差电偶(如二碳化钨-二碳化钼、石墨-碳化硅等)。温差电偶的结构形式,根据用途不同分为4种。①普通温差电偶:多用于工业。②铠装式温差电偶:热惯性小,动态响应快,时间常数可达0.01秒,有良好的柔性,抗震性能好。③薄膜温差电偶:用于壁面温度的快速测量,测温范围在 300℃以下,反应时间为几毫秒。④消耗型温差电偶:测钢水温度的温差电偶,使用一次即焚化,优点是热惯性小。
实际测温时根据被测介质的温度、压力、性质、测温时间长短来选择温差电偶和保护套管。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条