说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 超限归纳
1)  transfinite induction
超限归纳
2)  transfinite induction
超限归纳法
1.
In this paper, a general inductive principle for any ordered set is proved, and the mathematical induction, the transfinite induction and the continual induction are then deduced.
证明了一个适用于任意有序集的一般归纳原理,以此为基础导出了数学归纳法、超限归纳法和连续归纳法,从而揭示出三种归纳法的共同基础。
3)  principle of transfinite induction
超限归纳原理
4)  definition by transfinite induction
依超限归纳法的定义
5)  definition by transfinite induction
用超限归纳法定义
6)  inductive limit
归纳极限
1.
As an application,inductive limits of Toeplitz algebras are clarified.
本文给出了上述两个Toeplitz算子代数间的自然同态映照成为C~*-代数的单同态的充要条件,刻画了Toeplitz算子代数的归纳极限,证明了任何自由群上的Toeplitz算子代数是顺从的。
2.
It is also closed under the inductive limits.
我们证明了性质(C′)可以传递给C~*-子代数;若每个C~*-代数都具有性质(C′),则它们的有限张量积也具有性质(C′);性质(C′)对归纳极限封闭;我们如果用有限张量积的归纳极限来定义任意张量积,则任意张量积也具有性质(C′);同时,我们还给出了三个类似性质之间的关系。
补充资料:超限归纳法
      又称超穷归纳法,数学中用来证明某种类型命题的重要方法,亦称超限归纳证法。设 (Χ,≤)是一个良序集,对任意α∈Χ,Χα={b∈Χ│b<α}称为在Χ中由α所确定的截段。E嶅Χ称为归纳子集,如果对于任何α∈Χ,只要截段Χα嶅E,就有α∈E。超限归纳定理断言:设E为良序集(Χ,≤)的归纳子集,则E=Χ。因为若α为Χ的最小元素,则由,可得α∈E:如果α┡为Bα={b∈Χ│b>α}的最小元素,那么Χα'={x∈Χ│x<α┡}={α}嶅E,遂有α┡∈E。同理可得α″=(α┡)┡∈E等等。容易看出,Χ的良序性是定理成立的重要依据,倘若把它改为Χ是全序集,则Χ的非空子集可以没有最小元素,命题就不成立了。当Χ为自然数集N时,就得到上述定理的一个常用的特殊情况,称为数学归纳法,表述为:若E嶅N,满足①0∈E;②对于任何n∈N,如果由一切小于n的自然数k∈E,可以推出n∈E,则E=N。其中一切小于 n的自然数k∈E相当于Nn嶅E,而0∈E则是的结果。在引进"类"概念的前提下,超限归纳定理可以叙述为:设C是一个序数类,如果①0∈C;②若α∈C,可得α┡=α+1∈C;③若α为极限序数,并且对一切β<α,β∈C,就必然有α∈C,则C是所有序数的类。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条