说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 射影维数
1)  projective dimension
射影维数
2)  dimension of projective space
射影空间的维数
3)  projective function
射影函数
1.
The relation between the iteration of projective function and the linear recursive sequences of order 2 is given.
先给出射影函数的迭代与 2阶线性递归序列的关系 ,进而得到此递归序列与Bernoulli数的一个恒等
4)  Projective number sets
射影数集
5)  projective parameter
射影参数
6)  injective dimension
内射维数
1.
Injective Dimension under Flat Base Change;
平坦同态下模的内射维数
2.
In this paper,Author had discussed Gorenstein projective dimension and injective dimension of modules on Morita equivalence rings,the results as follow:If rings R≈S,then GpdRM=GpdSF(M),GidRM=GidSF(M).
在Morita等价的环上对模的Gorenstein投射维数与内射维数进行了讨论,有如下结论:若环R≈S,则GpdRM=GpdSF(M),GidRM=GidSF(M)。
3.
Similar to the injective resolution of M,the essential injective resolution and left essential injective dimension of M are defined,and the connections between left injecti.
在M-内射模的基础上引进了M-本质内射模的概念,研讨了M-本质内射模的一些性质,并且引入了M的本质内射分解和本质内射维数的概念,深入探讨了内射维数和本质内射维数之间的关系,得出了一些重要的结论。
补充资料:射影空间


射影空间
protective space

  射影空间[脚水‘,e娜.理;“poe~oe即。呷aHc佃] 关联系统(访cidenCes那把m)7r二{少,矶,}的所有子空间的集合,其中集合尹的元素称为点(polnt),集合了的元素称为线(址犯),而I是关联关系(Inci-de腿化lation).兀的一个子空间(su比pace)定义为少的一个满足以下条件的子集S:如果p,q〔S且p护q,则通过P与q的线上的点的集合也属于5.关联系统兀满足以下要求: l)对于任何两个不同点p与q,存在唯一的线L使得PIL与qIL; 2)每一条线至少与三个点关联; 3)如果两条不同线L与M相交于一点p,且以下四个关系成立二qIL,rIL,sIM,IIM,则通过点偶r,l与s,q的直线相交. 称子空间S是由少中点的一个集合s生成的(罗nera曰)(记为S=(s)),如果S是所有包含s的子空间的交.称点集s是独立的(i比北讲泪eni)如果对于任意x“s有x褚<八{x}>,子空间S的一个有序的极大且独立的点集称为S的一个基(h滔站),并且它的元素的个数d(S)称为子空间S的维数(d的rmion).0维子空间是点,1维子空间是射影直线(pIDJeC石记s喊ghtline),2维子空间称为射影平面(p吻民石ve Pla朋). 射影空间中定义了空间的加与交的运算.两个子空间尸,,与尸*的和尸.+尸*定义为既包含p,又包含p*的最小的子空间.两个子空间p.与p*的交p.自尸*定义为既包含在尸.中又包含在p*中的最大的子空间.子空间尸,,尸*,它们的和与它们的交的维数由以下关系联系: m+火=d(尸。:门p*)+d(p。.+p*).对任意尸。,存在p。一。一,,使得尸。自尸。一。一,二尸一二必,尸。十尸。_。_一p。(尸。_。一l是尸,在尸。中的一个补),并且如果p。:C=p,,则 (p,+p*)门pr一尸。+尸*门尸r对任意尸*成立(Dedekilld法则(I头xle灿闭川卜)),即,关于刚引人的运算,射影空间是一个有补模格(nx以ular lat石优). 维数超过2的射影空间是1)留ar孚匕的(见〔短sa月罗璐假定(L犯sarg呢sassulnPti田)),从而同构于一个适当的除环(skew币e记)k上的(左或右)射影空间.(例如)一个除环k上的n维左射影空问p二(‘)是火上(。+l)维左线性空间A二+.(火)的线性子空间的集合;尸;(k)的点是A;十.(k)的线,即由k的不同时为零的元素组成的行(x。,二,x。)的左等价类(两行(x.,,一,x。)与(夕.,,一,夕。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条