2) lacunary polynomial
缺项多项式
1.
The necessary and sufficient conditions are obtained for the lacunary polynomials to be dense in C_α,where C_α is the weighted Banach space of complex continuous functions f(t) on R with f(t)exp{-α(t)} vanishing at infinity.
设函数α(t)在R上非负连续,Cα是R上满足lim|t|→∞f(t)e-α(t)=0的连续函数f(t)全体组成的Banach空间,得到了一个缺项多项式在Cα空间中稠密的充分必要条件。
3) multinomial
[英][,mʌlti'nəumiəl] [美][,mʌltɪ'nomɪəl]
多项的,多项式;多项式的
4) polynomial
[英][,pɔli'nəumiəl] [美][,pɑlɪ'nomɪəl]
多项式,多项的,多项式的
5) polynomials/chromatic polynomials
多项式/色多项式
6) multivariate polynomial
多元多项式
1.
In this paper the concept of reduplication modulus multivariate polynomial residue class rings has been set up, the method to study number theory is used, the composition of reduplication modulus duality polynomial residue class rings is discussed in detail .
本文提出了多元多项式重模剩余类环的概念,并将数论的研究方法推广到多元多项式重模剩余类环中,详细地讨论了二元多项式重模剩余类环的结构。
2.
The constitution theory of a properly posed set of nodes forthe multivariate polynomial graded interpolation is studied deeply inthe paper.
本文对多元多项式分次插值适定结点组的构造理论进行了深入的研究与探讨。
补充资料:多项分布
多项分布
ultinoniial distribution g?polynomial distribution
多项分布〔nl过山目画闯血方山团阅或p01ynom血ldistribu-tion;uo月”IloMH幼‘Hoep舰Ilpe几e几ellHe] 随机变量X:,…,X*的联合分布,它对于任意一组满足条件n,+…十。*二。,。j=0,…,n,j=1,…,k的非负整数摊:,…,n*,由下列公式定义 p{Xl二n,,二,X*=n*}= n! n一!‘’‘n众!其中n,,.,二,,*(,,)o,艺药一l)为分布的参数.多项分布是一种多元离散分布—满足X:+…+X,=。的随机向量(X、,…,X*)的分布(这个分布实质上是(k一l)维的,因为它在k维E谓Ud空间中是退化的).多项分布是二项分布(binorrnial曲川bution)的自然推广,后者即同于k=2的情形.这个分布名称的来由是因为概率(*)是(P:十…+p*)”多项展开式的通项.多项分布出现在如下的概率概形中.每个随机变量X‘是互不相容事件A,(j=1,2,…,k)之一在重复独立试验中发生的次数.如果事件Aj在每次试验中的概率为巧(j=1,…,k),那么概率(,)就等于在”次试验中事件A,,二,A*分别出现nl,…,n*次的概率.每个随机变量Xj有数学期望为。Pj且方差为”马(1一Pj)的二项分布. 随机向量(X,,…,X*)有数学期望(nP:,‘二,n,*)与协方差阵B=}lb,,11,其中 厂。P‘(l一P‘),i=j, b:=之i,j=1,…,k 贬一np,p,,i笋j,(因为艺李二1。。=。,故矩阵B的秩为k一1).多项分布的特征函数是 f(tl,…,t*)=(P le’r’+…+P*e’“)”.当n~的l付,有正规化分量 X,一nP: 艺一不益亡责一的向量(Yl,…,Y七)的分布,趋于某一多元正态分布(nom笼幻曲颐bution),而和 k 艺(l一夕‘)y) 口=I的分布(它在数理统计中常用来构造xZ检验(’chi-squared‘招t))趋于k一1自由度的x’分布(’chi-sq珑川刃‘distribution).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条