说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拐点周期
1)  TG
拐点周期
2)  Corner period
拐角周期
3)  characteristic value of long Period of response spectra
反应增长周期拐点值
4)  prime periodic point
素周期点
1.
Condition of the continuous self-mapping of unit solid body in R~n with prime periodic points;
N维单位体上连续映射有素周期点的条件
2.
Nitecki indicate the equal value of the special abnormal point,abnormal point and prime periodic point,respectively.
N iteck i分别指出了有特殊异状点、有异状点、有素周期点三者等价。
3.
Nitecki indicates respectively the equalvalue of the spcial heterochinic,point,heterochinic point and prime periodic point.
Nitecki分别指出了有特殊异状点、有异状点、有素周期点三者等价。
5)  Periodic point
周期点
1.
On the periodic point set of a n-dimensional self-mapping;
关于一类n维自映射的周期点集
2.
The existence theorem of the periodic point of the tree map;
树映射周期点的存在性定理
3.
Condition of the continuous self-mapping of unit solid body in R~n with prime periodic points;
N维单位体上连续映射有素周期点的条件
6)  Periodic points
周期点
1.
In this paper, characters about eventually periodic points of δ and σ are studied ,it is proved that δ and σ on the symbolic space Σ 2 have the same eventually periodic points set , i.
符号空间上的比较映射δ是与移位映射σ拓扑共轭的空间自映射 ,进一步研究了δ与σ的终于周期点的特征 ,证明了符号空间Σ2 上的比较映射δ与移位映射σ具有完全相同的终于周期点集 ,即EP(δ) =EP(σ) ,并给出了关于δ与σ的终于周期点之间的关系的几个结
2.
Furthermore, the characters of periodic points of the comparing map δ are studied, and several equivalent conditions for certain periodic points and generalized periodic points are obtained.
介绍了符号空间Σ2上的比较映射δ,通过构造一个无穷01矩阵T∞,证明了符号空间上的比较映射δ与移位映射σ拓扑共轭,并进一步研究了描述比较映射δ的周期点的某些特征,给出了刻画δ的某些周期点和广义周期点的几个等价条件。
3.
Taking the one dimension tent map as an example,this paper proves that the map has numerous limited periodic points by using the Sharkovskii Theory,which shows why weak keys exist.
作者以一维帐篷映射为例,利用Sharkovskii定理证明了该映射具有无穷多的有限周期点,从而解释了混沌映射出现弱密钥的原因。
补充资料:Besicovitch殆周期函数


Besicovitch殆周期函数
esicovitdi almost-periodic functions

Besi句讨叻殆周期函数【Besico,i的习m以一Peri诫c血n比姗;欣,胭口”幼洲旧.,”“uep即朋犯e哪中洲.明.] 一类殆周期函数(尸一a.p.),在其中一个与Riesz一Fischer定理类似的定理成立:任意一个满足条件 艺}a。}’<00的三角级数 艺a。。,、·必是某个宁殆周期函数的Fourier级数.这类函数的定义“11,【21)以殆周期(almost一period)概念的推广为基础,而且必须引进某些附加的概念.实数集E称为充分齐性的,如果存在数L>0,使得E的元素落在长度为L的区间中的最多个数与落在长度也是L的区间中的最少个数之比小于2.充分齐性集也是相对稠密的.在实轴的任意有限区间上p次幂可积的复值函数f(x)(一田0,相应有一个充分齐性的数集(所谓函数f(x)的(Bp,。)殆周期): …<了一2<了一l<甸<卜一<‘”,使得对每一个i有 Mx{!f(x+爪)一f(x)!尸}<尸,并且对任意c>O有 、、告‘i〔!,:十一,一f(·,‘/“‘<一其中, 、F(x)}一贩去沙·)“, 又‘F“,,·瓦丽认,;,F“,·这里的F(x)是一个实值函数,分别对实变量及整数变量定义.[补注]与其说Besicovitch是在[l」和[2」中还不如说是在[All中提出了他的理论. 正是在这篇文章中隐含了,对每一个P)1存在一类殆周期函数,记为孑.文章的第一部分讨论牙,其余部分讨论更一般的情形.比较全面的参考文献见殆周期函数(a lmost一periedic funCtlon).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条