1)  Raman transition
					
	
					
				
				
	
					
				喇曼跃迁
			
					2)  stimulated Raman transition
					
	
					
				
				
	
					
				受激喇曼跃迁
			
					3)  Raman process
					
	
					
				
				
	
					
				喇曼跃迁过程
			
					4)  Raman transition
					
	
					
				
				
	
					
				拉曼跃迁
				1.
					Then the three-level evolution equations are transformed into linear differntial evolutions in the same way,which provides a probability of solving the evolution equations of velocity-selective stimulated Raman transitions accurately.
						
						再将这种方法推广到三能级演化方程组,也可化为常系数,使得精确求解筛选速度的受激拉曼跃迁的演化方程成为可能。
					
					5)  stimulated Raman transition
					
	
					
				
				
	
					
				受激拉曼跃迁
				1.
					A group at the University of Texas at Austin has recently created Rb\-2 moleculaes from a Rubidium\|87 Bose\|Einstein condensate with two\|photon stimulated Raman transitions.
						
						德州大学奥斯汀分校 (UniversityofTexasatAustin)的实验小组最近以受激拉曼跃迁的方法将玻色 -爱因斯坦凝聚体 (Bose Einsteincondensate)中的铷原子转换为单一内部能态 ,温度约为 10 0nK的铷分子 (Rb2 ) [1] 。
					2.
					The results have shown that a stimulated Raman transition will be dominated, when some conditions are met by both the atom and the light field.
						
						结果表明,当原子和光场由于多普勒效应满足一定条件时,将产生受激拉曼跃迁。
					
					6)  Raman
					[英]['rɑ:mən]  [美]['rɑmən]
					
	
					
				
				
	
					
				喇曼
				1.
					The Characteristics of Raman Spectrometry for the Saturated Hydrocarbons in Oil;
					
					
						
						
					
						石油中饱合烃类的喇曼特征
					2.
					Numerical Simulation and Analysis of One-order Raman Fiber Laser;
					
					
						
						
					
						一阶喇曼光纤激光器的模拟及分析
					3.
					Raman Online Measurement of Stress Resulting from Micromachining;
					
					
						
						
					
						微加工工艺应力的喇曼在线测量
					补充资料:受激激辐射跃迁概率
		分子式:
CAS号:
性质:处于激发态的原子Nj,受能量的hv(h为普朗克常数)的入射光子的激励下,从激发态跃迁到低能级。当在dt时间内,在dNjo个激发态原子发生受激辐射,则dNjo与跃迁前高能级上的原子数Nj,辐射能量密度ρ(v),激发时间dt成正比,即dNjo=BjoNjρ(v)dt。式中Bjo为受激跃迁系数。Bjo与ρ(v)的乘积称受激辐射跃迁概率,定义为
		
		CAS号:
性质:处于激发态的原子Nj,受能量的hv(h为普朗克常数)的入射光子的激励下,从激发态跃迁到低能级。当在dt时间内,在dNjo个激发态原子发生受激辐射,则dNjo与跃迁前高能级上的原子数Nj,辐射能量密度ρ(v),激发时间dt成正比,即dNjo=BjoNjρ(v)dt。式中Bjo为受激跃迁系数。Bjo与ρ(v)的乘积称受激辐射跃迁概率,定义为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
	参考词条