1) mathematical operator
数学算子
2) mathematics morphology operator
数学形态学算子
1.
With the combination of the ontology-based theories and the introduction of the mathematics morphology operators,it unified the spatial topology relations judgment and the spatial direction relations judgment,and made integrative reasoning of multi-aspect spatial relations based on ontology.
结合本体论的理论基础,在引入数学形态学算子的基础上,把空间拓扑关系和空间方向关系结合起来,进行基于本体的多方面空间关系组合推理。
3) operator-valued mathematical expectation
算子值数学期望
1.
Making use of general Pettis integral,operator-valued mathematical expectation and continuous modified modulus,this paper has deduced the probabilistic approximation and convergent rates about exponentially bounded C-semigroups, which has improved existing results.
借助广义Pettis积分、算子值数学期望、连续修正模等概念,得到了指数有界C半群的概率型逼近式及收敛速度的估计式,改进了已有的结果。
4) operator algebras
算子代数
1.
And the relation between the S hyperreflexivity and the hyperreflexivity of operator algebras is discussed.
在自反Banach空间上引入S超自反的概念,讨论了S超自反与算子代数超自反的关系,同时讨论了超自反算子代数直和的超自反性。
2.
We prove the following theorem: Suppose that C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R) are, respectively, classes 0,Ⅰ,Ⅱa,Ⅱb,Ⅲa andⅢb of general symmetric operator algebras on spaceⅡk.
本文研究Pontrjagin空间上一般算子代数弱闭和一致闭的等价条件,得到定理:设C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R)分别是Ⅱk空间上第0,Ⅰ,Ⅱa,Ⅱb,Ⅲa和Ⅲb类的算子代数,则(1)C0(U),C2a(U)或C3a(U)为一致闭(弱闭)的等价条件是U是Hibert空间G上的C*-代数(W*-代数;(2)C1(U,L,R,D,V)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间,V是闭算子,L对称闭的;(3)C2b(U,R)或C3b(U,R)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间。
3.
The concept of generalized T_derivation is introduced and the properties of T_derivations on pure algebra and operator algebras are obtained.
引进T_导子的概念 ,刻划了一般代数和算子代数上的T_导子的特征性质 。
5) count operator
计数算子
1.
Although count operator was used effectively in the process of data preprocessing, abusive use would cause the inconsistent problem of attribute relationship.
包括计数算子在内的属性构造技术往往能够提高数据挖掘模型的预测精度,但不加条件地使用会导致属性关系不一致问题。
6) operator series
算子级数
1.
Vector-valued multiplier convergence of operator series;
算子级数的向量值乘数收敛(英文)
2.
A theorem on uniform convergence of operator series;
关于算子级数赋值一致收敛的一个定理
3.
The characteristic of c0(X)-evaluation uniform convergence of operator series is obtained in this paper.
给出了(X,L(X,Y))中算子级数的c0(X)-赋值一致收敛的特征。
补充资料:数学期望
| 数学期望 mathematical expectation 随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个, 则此城市中任一个家庭中孩子的数目是一个随机变量,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条