1)  complete Riemannian metric
					
	
					
				
				
	
					
				完备黎曼度量的
			
					2)  Riemannian metric
					
	
					
				
				
	
					
				黎曼度量
				1.
					The Riemannian metric of perspective in stereo graphic projection is introduced and a property of the continual cut vector field on the spherical surface is discussed.
						
						介绍了在球极投影下引入的黎曼度量,并介绍了这种度量的一些性质,指出了这种度量与从平直的欧几里德空间标准度量中诱导的黎曼度量是一致的;同时指出在球面上的连续切向量场上必然有奇点存在,这就为球面的量测作了理论上的准备;最后介绍了球极投影下的联络系数及其计算公式。
					2.
					We deduce the Riemannian metric on complex projective space from Riemannian submersion π:S2n+1→CPn,get its volume element We also prove that one type totally real submanifolds of CPn is none but ndimensional sphere Sn.
						
						用黎曼淹没π:S2n+1→CPn诱导出CPn上的黎曼度量及其在不同坐标系下的表达形式;算出其体积元,并得到CPn上一类n维全实子流形与n维球面Sn等
					3.
					In this paper, we study some conditions and properties for an important class of randers metrics in forms of F(y)=(β(y)~2+(1-|β|~2)α(y)~2)~(1/2)-β(y)/1-|β|~2 to be pointwiseprojective toα,whereα(y)=(α_(ij)(x)y~iy~j)~(1/2) is a Riemannian metric on ann-dimensional manifold M andβ(y)=b_i(x)y~i is a 1-form on M.
						
						本文研究了一类重要的形如F(y)=(β(y)~2+(1-|β|~2)α(y)~2)~(1/2)-β(y)/1-|β|~2的Randers度量与黎曼度量α逐点射影相关的条件和性质。
					
					4)  THE RIEMANNIAN METRIC OF FIBER BUNDLES
					
	
					
				
				
	
					
				纤维丛的黎曼度量
			
					5)  complete noncompact Riemannian manifold
					
	
					
				
				
	
					
				完备非紧黎曼流形
				1.
					It is well-known that there is a unique vertex on rotating parabolic surface in three-dimensional Euclidiean space,the paper generalizes the concept of vertex to a complete noncompact Riemannian manifold with nonnegative curvature.
						
						将三维欧式空间旋转抛物面顶点的定义推广到一般的非负曲率完备非紧黎曼流形上,利用Perelman G证明Chee-ger-Gromoll核心猜想的几何方法,讨论了具非负曲率的完备非紧黎曼流形M上的核心S的结构,证明了如果由核心出发的法测地线均为射线,则或者S退化为一点,或者M=Rk×N,其中N是紧致的具非负曲率的黎曼流形。
					2.
					The paper discusses the structure of the soul in a complete noncompact Riemannian manifold M with nonnegative curvature,and proves that if the soul of the manifold is unique,then the soul actually degenerates to a pole.
						
						讨论了具非负曲率的完备非紧黎曼流形上的核心的结构,证明了如果核心是惟一的,那么核心将退化为极点。
					3.
					The parallel properties of the rays in a complete noncompact Riemannian manifoldM were discussed in this paper, It is proved that the Busemann functions corresponding to any given two parallel rays are just the same as each other in the sense of H.
						
						讨论了具非负典率的完备非紧黎曼流形M上平行射线的性质,证明了此时两平行射线对应于M上的同一个Busemann函数。
					
					6)  normal complete open riemannian manifold
					
	
					
				
				
	
					
				完备非紧正则黎曼流形
	补充资料:完备
		①准备齐全:酒席已经完备|车马完备,即刻出发。②齐全;应有尽有:条文完备|完备无缺。③完成:工程完备|清点完备。
		
		说明:补充资料仅用于学习参考,请勿用于其它任何用途。
	参考词条