1) hyperbolic series

双曲线级数
2) hyperbolic function series

双曲函数级数
1.
A general class of solutions to nonlinear scalar equations with static cylindrical symmetry is obtained in the form of a hyperbolic function series.
利用双曲函数级数的技术 ,研究了静态轴对称非线性标量方程的解析解 。
3) double logarithmic curve

双对数曲线
1.
By drawing the double logarithmic curves of fracturing pressure and construction time, the data of pressure response could be obtained after sands jam happened.
通过做出压裂施工压力和施工时间的双对数曲线 ,可以确定砂卡发生后的压力响应数据 ,将这些数据进行线性回归 ,求得直线段斜率 ,然后根据求得的斜率和相关的裂缝参数 ,即可求出裂缝中砂卡的位置。
4) Hyperbolic Function

双曲线函数
1.
The load-settlement relationship of skin friction q of every part of squeezed branch and corresponding settlement s of plate pile is presupposed as hyperbolic function,the necessary parameters are obtained based on the measured data,and compared with q-s relationship of measured every part.
假定支盘桩直桩段的桩侧摩阻力和含有分支或承力盘桩段的等效侧摩阻力q与相应桩土相对位移s的关系可用双曲线函数表示,根据实测数据采用最小二乘法求出所需系数,并用所得的双曲线与实测各分段的q-s关系进行对比。
2.
According to the data statistics of max transformation aside of pit to time, the paper established 3 typical hyperbolic function of displacement to time (depth).
根据实测软土基坑坑侧最大位移与时间关系资料,经统计分析建立了3种有代表性的位移与时间(挖深)的双曲线函数。
3.
According to analysis of the behavior of sand surrounding pile tips,a hyperbolic function is presented considering the compressibility of soil around pile tip which establishes certain relation between end bearing capacity and penetration at pile base.
对桩端周围土体的性状进行了分析,引入考虑桩端土体压缩特性双曲线函数,将桩端阻力的发挥同桩的刺入变形联系起来。
5) double exponential curve

双指数曲线
1.
In this paper, an algorithm named the method of cyclic search is suggested to make full use of observed values to determine the initial values of parameters during double exponential curve is fitted in the meaning of least square by means of Gauss Newton method.
提出了在最小二乘意义下用 Gauss-Newton法拟合双指数曲线时 ,充分利用观测值确定参数初始值的一种算法——循环搜索法 。
6) hyperbolic logarithm

双曲线对数
补充资料:殆周期函数的Fourier级数
殆周期函数的Fourier级数
eriodic function Fourier smes of an almost-
殆周期函数的F以的份级数tF.币er胭iesof皿自协阅d-声训让俪以如,;。抑‘ep:月。o,T“Ilep,0口料ec耐中yU叫11,] 形式为 f(x)一艺a。e!‘·‘(*)的级数,其中又,是Founer指数,a。是殆周期函数f的Founer系数(见殆周期函数的f饭耐灯指数(Fo~知dja治of ana」Inost一沐‘浏元丘m面。n);殆周期函数的f加6甘系数(Fo~“犯m6翻匕of anal-住幻st一详石司元丘川以沁n)).任意实值或复值的殆周期函数都有形式(*)的级数与之对应.Founer级数的性质本质上依赖于该函数的Founer指数集的结构,也依赖于加在这个函数的Founer系数上的限制条件. 例如,下面的定理成立.如果 艺{a,}2<二, 月=0则存在一个B洲政州奴血殆周期函数(B昭icovitCh aha眺t-详力闭元几朗tions),使得三角级数(*)是它的Fo~级数.对于一致殆周期函数,如果a。>O,则级数 艺a。 ”=0收敛.如果一致殆周期函数的Founel,指数线性无关,则该函数的Fourler级数绝对收敛.如果一个一致殆周期函数有一个缺项Founer级数,则这个级数一致收敛.【补注】一致殆周期函数也称为B曲r殆周期函数(BOhra」11〕ost一详泳对允丘mctions).关于缺项Fo一级数的概念见缺项三角级数(la~T颐即nonr州c哭n。).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条