1) normal automorphism
正规自同构
2) syndiotactieity
间同(立构)规正度
3) normal congruence
正规同余
1.
Minimal normal congruence of DI-C_ω-Semigroup generating by comgruence pair;
双C_ω—半群由同余对生成的最小正规同余
2.
By defining normal congruences and normal subsemigroup,the rectangular congruence pair is constructed to investigate the rectangular group congruences on E-inversive semigroup.
研究同余是研究半群的一种最常用的方法,以下主要通过定义正规同余和正规子半群来构造矩形同余对,从而研究E-逆半群上的矩形群同余。
4) normal homomorphism
正规同态
5) normal structure
正规结构
1.
Milman′s modulus of smoothness and normal structure
Milman光滑模与正规结构
2.
Let X be a Banach space,and K be a nonempty bounded closed convex subset of X which has a normal structure.
X表示Banach空间,K是X中的非空有界闭凸子集且具有正规结构,已知平均非扩张映射T:K→K,满足‖Tx-Ty‖≤a‖x-y‖+b‖x-Ty‖, x,y∈K,a,b≥0,a+b≤1在K中存在唯一的不动点。
3.
In this paper, we discuss normal structure of ss( E k ), and give a criterion of midpoint local uniform convexity of ss( E k ).
本文讨论了ss(Ek)的正规结构和中点局部一致凸 。
6) selfnormalizing
自正规
1.
Finite groups whose subgroups are either pronormal or selfnormalizing.;
子群为类正规或自正规的群
2.
The finite groups whose subgroups are either conjugate permutable or selfnormalizing are studied,while some properties and classifications are obtained.
对所有子群皆为共轭置换或自正规的有限群进行了研究,获得了这类群的一些性质,并进行了分类。
补充资料:正规
符合正式规定或公认标准的:正规战|正规程序。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条