1) conceptual integrity
概念完整性
2) completeness of concept
概念的完备性
3) whole concept
整体概念
1.
Through introducing the meanings of concept teaching method and wide analysis on it in points of view of time concept,whole concept and co-operative course treatment,and how to apply this thought to concret
通过阐述概念教学法的含义,并从时间概念、整体概念、课程相互关系处理等角度进行分析,指出概念教学如何在混凝土结构课程中运用的教学思想。
4) conceptual integration
概念整合
1.
The interpretation of Chinese ancient poems from the conceptual integration theory;
从概念整合理论解读中国古典诗词
2.
A comparative study of conceptual metaphor theory and conceptual integration;
试比较概念隐喻理论和概念整合理论
3.
A conceptual integration approach to puns in advertisements
广告双关语的概念整合研究
5) conceptual blending
概念整合
1.
From conceptual blending theory to the meaning construction process of conventional metaphors:a corpus study based on People s Daily;
从概念整合理论看常规隐喻的意义构建过程——基于《人民日报》的语料研究
2.
A study we have conducted of the structural features and emerging process of the metaphor from the perspectives of conceptual metaphor,frame structures and conceptual blending explains why war metaphor is so widely used and also reveals the linguistic and social influences of the metaphor.
从当代认知语言学的概念隐喻、框架结构、概念整合几个视角出发对这种隐喻的结构特点和生成过程的分析,解释了战争隐喻广泛运用的原因,揭示了其语言和社会影响,并对媒体如何使用战争隐喻提供了建议。
3.
Based on the mental space theory proposed by Fauconnier,this essay explores this language phenomenon from the perspective of conceptual blending and grammatical blending.
而从认知的角度,Fau-connier的概念整合和语法整合理论为分析解释这一语法结构存在的理据提供了崭新的视角。
6) conceptual blending theory
概念整合
1.
This article uses conceptual blending theory to analyze English humor translation and arrives at a conclusion that conceptual blending theory is of practical significance to English humors translation.
运用概念整合理论对英语幽默翻译作为研究对象,对其进行具体分析,从而得出结论:概念整合理论对于英语幽默的翻译有着重要的实际意义。
2.
The conceptual blending theory is a new and developing branch of cognitive linguistics which is becoming the hot topic in the national linguistic field.
概念整合理论正在成为我国语言学界研究的热点。
补充资料:哥德尔不完备性定理
| 哥德尔不完备性定理 G del's incompleteness theorem数学家K.哥德尔于1931年证明的两个定理。第一不完备性定理:任意一个包含算术系统在内的形式系统中,都存在一个命题,它在这个系统中既不能被证明也不能被否定。第二不完备性定理:任意一个包含算术系统的形式系统自身不能证明它本身的无矛盾性。 哥德尔的不完备性定理使希尔伯特证明数论系统无矛盾性的方案归于失败。但哥德尔的证明中所用到的方法却开创了递归论的研究。哥德尔不完备性定理中所指出的不可判定的命题是理论的而不是自然的命题。1977年,J.帕里斯给出了一个自然的命题,这个命题在数论中是不可判定的。这又引起人们寻找这类问题的兴趣。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
del's incompleteness theorem