2) integral manifold

积分流形
1.
A geometry integral manifold control approach is studied to drive the output manifold exactly track the design manifold based on the nonlinear singular perturbation characteristic of the maglev system.
基于非线性磁悬浮系统的奇异摄动特点,研究了一种精确几何积分流形控制方法,使磁悬浮系统的稳态流形能够无误差地跟踪给定设计流形。
2.
The development of singularly perturbed systems for recent years is discussed, including the stability analysis, optimal control and H ∞ control of the linear singularly perturbed systems, the stabilization and optimal control of nonlinear cases, and the integral manifold based geometry approach.
系统地回顾了近年来奇异摄动控制技术的发展 ,主要包括线性奇异摄动系统的稳定性分析与镇定、最优控制、H∞ 控制 ,非线性奇异摄动系统的镇定、优化控制和基于积分流形的几何方法 ,以及奇异摄动技术在实际工业 ,例如机器人领域、航天技术领域和工程工业、制造业等中的成功应用 。
3.
With the method of numerical calculation and analysis,the geometric structure of the integral manifold through the limit cycle of the Brusselator equation in the complex domain is discussed.
用数值计算与分析相结合的方法,研究了复域上Brusselator方程过极限环的积分流形的几何结构,证明了此积分流形Γ′具有自稠密性,在接受李群角度上说明了该系统的不可积性。
3) almost product manifold

殆积流形
4) manifold product

流形积
5) integral submanifold

积分子流形
1.
Let M be an n-dimensional pseudo-umbilical integral submanifold in (2n+1)dimensionalSasakian space form,we obtain two integral inequalities and a sufficient condition under which M is totallygeodesic.
设Mn是2n+1维佐佐木空间型N(2n+1)(C)中的n维伪脐积分子流形。
2.
Some new intrinsic rigidity theorems of minimal integral submanifolds in a sasaki space form are obtained, so the corresponding results due to Maeda and Qu are improved.
本文重新给出了Sasaki空间型中极小积分子流形的关于Rici曲率的内蕴刚性定理,它改进了[2]及[3]中的有关定理,而且取消了[3]中关于维数的限制。
3.
Okumura is generalized to a integral submanifold of contact distribution of a Sasakian space form.
Okumura关于数量曲率和截面曲率关系间的一个著名不等式,推广到Sasakian空间型中切触分布的积分子流形上,较简捷地获得了这种积分子流形成为全脐子流形的某些特征。
补充资料:积流
1.指大海。 2.指河流。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条