说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 抛物线的变换
1)  transformation of parabola
抛物线的变换
2)  Hilbert transform along parabola
沿抛物线的Hilbert变换
3)  linear、 parabolic Radon transform
线性、抛物Radon变换
4)  parabolic Radon transform (PRT)
抛物线Radon变换(PRT)
5)  parabolic Radon transform
抛物线Radon变换
1.
Separating and suppressing multiples by sparse solution of parabolic Radon transform;
用抛物线Radon变换稀疏解分离和压制多次波
6)  parabolic Radon transform
抛物线拉东变换
补充资料:Hilbert变换


Hilbert变换
Hflbert transform

F口映时变换IF口饭时如.目触而;r妞二浦e脚a。碑丽pa-300ao.el,函数f的 反常积分 l下f(x+t、一r‘(x一t) a 1 XI=—I一己不.1 IJ 兀J【 0 如果f任L(一的,的),则对于几乎所有x值,函数g存在·如果f‘气(一的,‘),p任(1,的),则函数g也属于乌(一的,的),并且反演公式 “二、=一上f月赵三旦上」业生旦.d:。2、 兀节r几乎处处成立.这里 丁}。(x)!2。、叽J,,(x):、,(3)其中常数城仅依赖于P. 公式(l)和(2)等价于公式 a(x卜上fZ交生己t.(4) 兀几i一x *(x卜上f卫业立、‘_(5) 7r少,r一X其中积分被理解为主值意义下的. 在主值意义下考虑的积分 2沈 “‘·,一责)f“,cotan宁‘亡(6,也称为f的Hilbert变换.这个积分通常称为H刃比找奇异积分(珊比d 51刀g川ar integ阁).在Fo~级数的理论中,由(6)定义的函数g称为与f是共扼的(conj火笋te). 如果了6L(0,2兀),则g几乎处处存在,而如果f满足。(“〔(0,l))阶Li砂面tZ条件,则对于任何x,g存在,并且也满足同样条件.如果f‘乌(0,2幻;P钊1,co),则g具有同样性质,并且存在类似于(3)的不等式,其中积分取在区间(O,2幻上.因此,由田比n变换生成的积分换子是相应空间L,上的有界(线性)算子. 如果f满足LipschitZ条件,或者f‘气(o,2幻,并且还有 2沈 丁。‘x,“x一“, 0则下列反演公式成立: f(·卜一责了。(亡)cotan子、亡,(7)并且一“-----一 2兀 丁,(x)d、一。. 0在满足Li娜chitZ条件的函数类中,等式(7)处处成立,而在p次幂可积的函数类中,等式(7)几乎处处成立. 可以把上述各对公式中的一个公式,例如(4)或(5),看成一个第一类积分方程;这时,另一个公式给出这个方程的解. 如果把函数co枷{(t一x)/2}和l/(r一x)看成积分算子的核,则它们常常称为别口映时核(田忱找ker-nel)和0的y核(〔泣uchy keIT把1).在单位圆的情况下,在这两个核之间存在简单关系: d;1「卜x二1, 食一言L①tan学+‘J“‘,其中古=创上,T=砂.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条