1) approximating spline

逼近样条函数
2) spline approximation method

样条函数逼近法
1.
The identification and parametric analysis of moving loads on simply supported and multi-span continuous girder bridges are performed using the spline approximation method.
采用样条函数逼近法对简支梁桥与多跨连续梁桥上的移动荷载进行识别和参数分析。
2.
The identification and parametric analysis of moving loads on simply supported and multispan continuous girder bridges are performed using the spline approximation method.
采用样条函数逼近法对简支梁桥与多跨连续梁桥上移动荷载进行识别和参数分析。
4) spline approximation

样条逼近
1.
Fitting method for pump characteristic curve based on optimal knots spline approximation;

基于最优节点样条逼近的水泵特性曲线拟合方法
2.
Study on evaluation method using spline approximation;

基于样条逼近的评价方法研究
3.
By using the theorem of Lezanskil this article has proved the strong uniqueness of spline approximation in lp(2≤p<∞) spaces according to the definition of Smarzewki.
本文利用Lezanski的定理,证明在lp(2≤p<∞)空间中按照Smaxzewki提出的样条逼近具有强唯一性此外,还证明当1<p<2时在lp空间中样条逼近也具有强唯一
5) Function approximation

函数逼近
1.
The function approximation ability comparison of two wavelet networks and their applications;
两种小波网络的函数逼近能力比较与应用
2.
Function approximation capabilities of intuitionistic fuzzy reasoning neural networks;

直觉模糊神经网络的函数逼近能力
3.
Function Approximation Study of General Fuzzy System;

模糊系统的函数逼近特性研究
6) approximation of function

函数逼近
1.
And as the approximation of function for example,approximating the emulation of the different BP neural Netwlrk with the figure of primary function,it compares the performance of different BP neural network,Advantages.
并以函数逼近为例,通过对不同的BP神经网络仿真与原函数图像的拟合,比较不同的BP神经网络的性能,验证新型BP网络的优势,得出如何根据对象选取神经网络的结论。
2.
This paper discusses differences and relations between Newton and Lagrange interpolation polynomial in approximation of function.
讨论了Newton及Lagrange插值多项式在函数逼近中的联系和区别。
3.
This paper discusses differences and relations between Taylor Polynomial and Newton interpolation polynomial in approximation of function.
讨论 Taylor多项式与 Newton插值多项式在函数逼近中的区别和联系。
补充资料:逼近
逼近
approximation
通近【即pm劝m浦门;anl平.院~u栩],亦称近似 把一些数学对象用另一些在某种意义下与其相似的对象来代替,采用这种方法,可以把研究一个数学对象的数值特征和量的性质的问题,转化为研究另一些比较简单、比较方便的对象(例如具有容易计算的特征和已知性质的对象).在数论中,研究DioPhantus逼近,特别是研究用有理数逼近无理数.在几何学和拓扑学中,研究曲线、曲面、空间和映射的逼近.实际上,某些数学分支几乎专门研究逼近,例如函数逼近论和数值分析方法的理论.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条