说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 概率论与随机过程
1)  Probability Theory and Stochastic Process
概率论与随机过程
2)  stochastic process theory
随机过程论
3)  random process theory
随机过程理论
1.
From the frequency response function of the quarter car,the response function of the displacement difference between above-spring and beneath-spring mass is obtained by means of the random process theory.
将路面不平整度假设为随机平稳变量而作为四分之一车模型的激励,并基于随机过程理论,通过频率响应函数求得簧上质量与簧下质量的竖向位移差的响应,由响应统计特性建立国际平整度指数IRI与簧上质量的功率谱密度均方值之间的线性相关关系。
2.
This paper optimizes the inventory management of logistics with the application of random process theory.
基于随机过程理论对物流活动中的库存管理进行优化。
4)  random probability
随机概率
1.
The Monte Carlo method based on random probability is used to generate the workspaces of manipulators.
文章采用随机概率的蒙特卡罗方法得到了平面机器人的工作空间。
5)  mean-square almost periodic ran-dom process
均方概周期随机过程
6)  stochastic process
随机过程
1.
A numerical simulation of the track irregularity stochastic process;
轨道不平顺随机过程的数值模拟
2.
Convergence of the sum of a kind of stochastic process;
一类随机过程之和的收敛性
3.
Measurability on Two-Dimensional Stochastic Processes;
两参数随机过程的可测性
补充资料:随机过程论中的统计问题


随机过程论中的统计问题
statistical problems in the theory of stochastic processes

究对于探讨尸。与尸。可能的奇异性也是有用的. 例4假定观测或者为x(t)二w(t),其中w(0为一Wi印er过程(Wiener process)(H。假设),或者x(r)=州t)+w(t),其中附为一非随机函数(H,假设).如果m’6L2(0,T),则测度p(,,pl是相互绝对连续的,而如果。’必L:(0,T),则它们是相互奇异的.其似然比等于 d尸了 豆可Lx)-一{一合)〔优,(!)」2己亡·!川,(!)J·(亡)}· 例5.设x(t)二6十心(t),其中口为实参数而老(0为一零均值的平稳Gauss的Map珊过程(Markov妙cess),且有已知的相关函数厂(t)二。一“,‘,,:>0.此时测度尸子是相互绝对连续的,且有似然函数 dP不 万可气“)-一。p呀冬。二(。)、冬。二(:)、冬。:i、(才)‘: 一r tZ一’一、一’2“’一‘一‘2一才一‘一’- 一冬。2一牛。2::). 2“4-一j 特别地,x(o)+x(T)+:丁Jx(:)‘。关于族p万是一充分统计最(sul五cie以statistic), 随机过程统计中的线性问题.设观测了函数 血 x(。)二艺口,伞,(:)+七(:),(*) l其中奴t)是零均值且有己知的相关函数;(t,:)的随机过程,职,是已知的非随机函数,口二(0、,…,口*)是未知参数(口,为回归系数),而参数集0是R‘的一个子集.0,的线性估计是形如见c,二(t,)或其均方极限的估计量.找寻均方意义下的最优无偏线性估计的问题归结为解与r有关的线性代数或线性积分方程.事实上,最优估计目由对任何形如七=艺bj、(tj)且艺b,伞,(t,)=0的心组成的联立方程E。(吞,劲二0所确定.在若干情形下,当T~的时,用最小二乘方法渐近获得的O的估计,并不比最优线性估计坏,但前者在计算上更简单月.不依赖于:. 例6,在例5的条件下,k二1,中;(t)‘1.这时最优无偏线性估计最(血ea犷estin迫tor)为 、=.浩了「·(。)二(·)二)·(r)“亡{,而估计量T 。‘一喜f二(:)“。 T才-·一渐近地与之有相同的方差. G皿ss过程的统计问题.设{x(t):O蕊t簇T,p‘{}对所有口‘0为Gauss过程(Gaussian process).关于Gauss过程,有如下二者择一的结果:任何两个测度尸乙尸J或者相互绝对连续或者奇异.因为Gauss分布pJ是由其均值m。(:)二E。x(t)及其相关函数,。(s,t)=E,无(s)x(t)完全确定的,从而似然比d尸J/d尸J以一种复杂的方式由m。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条