1) domain of rationality

有理性域
2) rational number field

有理数域
1.
A simple discriminance on the matrix of rational number field Q to cycle matrix

有理数域Q上的矩阵为周期矩阵的一种简易判别法
2.
Some common results which used to decide a polynomial on rational number field irreducible are explained in this paper.
首先介绍了判别有理数域上多项式不可约的常用结论,讨论了形如f(x)=φ(x)(x-a1)(x-a2)…(x-an)+1的多项式的性质,并且得到了定理:若n>6,φ(x)>0且它的次数小于n的一半,则f(x)=φ(x)(x-a1)(x-a2)…(x-an)+1在Q上不可约。
3.
By indirectly applying the Eisenstein discriminant method,this paper explores and discusses two ways of judging the integral coefficients polynomials to be irreducible over the rational number field.
探讨了间接应用艾森斯坦因判别法判断整系数多项式在有理数域上不可约的两种途径。
4) rationality perspective

理性视域
1.
So, this paper analyzes the strategic management form the advanced rationality perspective.
进一步,立足于理性视域考察,侧重于逻辑前提和逻辑原理的反思,从管理主体以及战略管理学科理论与实践展开分析,将指向思想内容的科学批。
5) homogeneous bounded domain

齐性有界域
1.
Successively, in 1963, Vinberg, Gindikin and Piatetski-Shapiro[2] proved that any homogeneous bounded domain is holomorphically isomorphic to a homogeneous Siegel domain.
接着,Vinberg,Gindikin和Piatetski-Shapiro[2]于1963年证明了任何齐性有界域全纯同构于齐性Siegel域。
6) limited damage region

有限塑性域
1.
Based on the deformation,stress,damage features and regularity of short-limb shear wall,the hypothesis of limited damage region and finite plastic region close to two ends is proposed.
根据短肢剪力墙受力损伤及破坏的特点和规律,提出了墙端有限塑性域和墙端有限损伤域的概念。
补充资料:有理
1.有道理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条