1) propositional dynamic logic

命题动态逻辑
2) propositional modal logic

命题模态逻辑
1.
The formal reasoning of the fuzzy propositional modal logic based on plausibility degree is considered, and the description of the associated Kripke semantics is given.
探讨基于可信度的模糊命题模态逻辑的形式推理,给出相关的模糊Kripke语义描述。
2.
"" modal logical consequence in propositional modal logics K, K4, D, D4, T, S4.

研究了命题模态逻辑K,K4,D,D4,T,S4的“”型模态逻辑结果的自动推理。
3.
Propositional modal logic is now an effective tool in artificial intelligence and other areas of computer science,but predicate modal logic is not.
目前,命题模态逻辑已成为人工智能以及计算机科学等其他领域的有效工具,但谓词模态逻辑却不是。
3) proposition logic

命题逻辑
1.
The definition of truth degree in the classic two-valued proposition logic formula is populared to the uneven probability space whose power is 2,and two-valued logic(p,q) measure and its proposition probability truth degree are defined.
将经典二值命题逻辑中公式的真度概念推广到势为2的概率空间上,定义了二值逻辑(p,q)测度和其上命题的概率真度;在〔1/3,2/3〕的情形下证明了全体公式的概率真度之集在[0,1]中是稠密的,并给出了公式概率真度的表达通式。
2.
Aiming at the problem that there exists very complicated and a large amount of component constraints,an algorithm of component constraint detection based on proposition logic was proposed,in which the proposition in daily diction was transformed into the formal proposition of mathematical logic via the process of proposition symbolization,i.
针对组件约束数量大、复杂度高的问题,提出了一种基于命题逻辑的组件约束检测算法。
3.
In the viewpoint of proposition logic and based on extension theory,a new method for proposition representation is proposed.
从命题逻辑的角度 ,以可拓论为基础 ,建立了命题表示的一种新方法 ,提出了物元命题、事元命题和事物元命题的概念 ;指出物元命题与关于对象的陈述型命题相对应 ,事元命题和事物元命题与关于行为、事件的行为型命题相对应 ;探讨了命题的可拓性和可拓变换方法 ;给出了基于可拓集合的命题可拓集的概念 。
4) logical connection proposition

逻辑命题
1.
The highest level logic,or rather,the second level logic deals with logical connection proposition which is the highest grade proposition.
同时互逆主义逻辑的多层逻辑思想揭示了各类命题之间的内在关系,最高层即二层逻辑主要用于处理最高级别的逻辑命题,这是经典逻辑所不具备的功能。
2.
In other words, the logical connection proposition is composed of empirical mathematical connection propositions and the connective.
命题又可分为不同的层次,高层命题由低层命题构成,即逻辑命题由经数命题加联符构成,经数命题由事实命题加联符构成,事实命题由项构成。
5) propositional logic

命题逻辑
1.
The Generalized Tautology in Disturbing Fuzzy Propositional Logic System;

扰动模糊命题逻辑系统中的广义重言式
2.
Tense operators E(ever)and F(will)as well as their dual operators H(ever always be) and G(will always be) were introduced into lattice-valued propositional logic system LP(X), forming a lattice-valued tense propositional logic system LTP(X).
在格值命题逻辑系统LP(X)中引入时态算子E(曾经)和F(将会)以及它们的对偶算子H(曾经总是)和G(将会总是),建立了一个以时轴为语境的格值时态命题逻辑系统LTP(X)。
补充资料:模态逻辑
模态逻辑 modal logic 研究必然、可能及其相关概念的逻辑性质。逻辑的一个分支。模态逻辑所研究的命题“必然A”和“可能A”与通常命题演算中的命题不同。后者是真值函项,前者不是。因为,当A真时 ,“必然A”既可以是真也可以是假 ;当A假时,“可能A ”既可以是真也可以是假。模态命题演算是现代模态逻辑的基本内容之一。它是应用数理逻辑的方法研究模态命题逻辑的结果。最先开始这方面研究的是19世纪末的H.麦克考尔。在他的影响下,美国哲学家、逻辑学家C.I.刘易斯于1914年构造了一个模态命题演算。40年代末,卡尔纳普开始从语义方面研究模态逻辑。50年代末~60年代初,S.坎格尔、J.欣梯卡与S.A.克里普克等人发展了卡尔纳普的理论,提出了比较完整的模态逻辑的模型理论。60年代以后模态逻辑有很大发展,出现了许多新的系统,特别出现了许多非标准的模态逻辑系统。如认知逻辑、道义逻辑、时态逻辑等。模态逻辑由于研究和阐明了必然、可能、应当、知道等本体论和认识论概念的逻辑性质,因而具有深刻的哲学意义。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条