1) fissile dispersion
裂变物弥散
2) fission product dispersion
裂变产物弥散
3) smeared crack
弥散裂缝
1.
The micro-cracks are represented by the smeared crack model.
首先将混凝土中的裂缝分为微观裂缝和宏观裂缝,对于微观裂缝仍然使用传统的弥散裂缝模型;而宏观裂缝则利用无网格方法可以非常方便地调整节点分布的特点,通过增加裂缝节点和裂面边界的方法加以模拟。
2.
The smeared crack method is used to model the postcracking property and stress release.
混凝土材料采用弹塑性本构模型;为考虑材料达到极限强度后的性能,用弥散裂缝模式模拟混凝土拉裂后的应变软化及应力释放,用应变空间破坏面近似处理混凝土的压碎型破坏;钢筋采用等效薄膜模拟。
4) diffuse phase transition
弥散相变
1.
Based on the analysis of dielectric properties, theincrease in the degree of diffuse phase transition.
研究表明,B位离子有序化是直接提高弥散相变(DPT)程度的原因,其机理是离子扩散,存在扩散平衡。
2.
Dielectric measur ment showed a diffuse phase transition.
用普通的电子陶瓷一次合成法,在903K下制备了高度有序的Pb(Li1/4Fe1/4W1/2)O3铁电体,介电特性测量显示该材料有明显的弥散相变现象。
3.
Transition tem- perature increases and the dielectric constant of the materials varies by increasing the content of Bi ions, which show a diffuse phase transition in them.
随Bi掺杂浓度增大,相变温度升高,介电常数变化,存在弥散相变。
5) diffused phase transition
相变弥散
1.
30, the BaTi_ 1-x Sn_xO_3 ceramics experience a transformation from ferroelectrics with only diffused phase transition to relaxor ferroelectrics.
研究了它们的介电常数与温度和频率的关系,发现BaTi1-xSnxO3经历了一个由单纯相变弥散铁电体到弛豫型铁电体的变化过程。
6) diffused phase transition
弥散相变
1.
The Li-Mo co-doped ceramics have the characteristics of ferroelectric-paraelectric diffused phase transition,and transform fro.
在–30~+130℃,Li-Mo共掺杂时,陶瓷具有铁电–顺电弥散相变特征,随着频率的增加,介电常数峰值对应的温度tm移向高温,陶瓷由正常铁电体变成弛豫铁电体。
2.
The relative permittivities as a function of temperatures at 10 kHz show obvious characteristic of diffused phase transition.
介温曲线(10kHz)显示该陶瓷体系具有明显的弥散相变特征。
补充资料:大型设备基础混凝土裂缝防治
大型设备基础混凝土裂缝防治
protection and treatment for crack during construction of large volume foundation
daxlng shebe一Jiehu hunningtu}iefeng fangZhl大型设备蓦础混凝土裂缝防治(proteetion。ndtreatment for eraek during eonstruetion of large vol-ume foundation)在冶金工厂建设中,设备基础的混凝土约占混凝土工程总量的60%以上。随着冶金设备向大型化发展,设备基础的体积愈趋庞大。以中国上海宝钢工程为例,容积为4063m“的1号高炉,其基础混凝土工程量约为600om3;3座3oot转炉的基础底板的混凝土工程量将近700om“。施工时每次混凝土的浇筑量多在looom3以上。施工中,水泥水化热引起混凝土浇筑块体内部温度和温度应力剧烈变化,以及混凝土的凝结收缩,都会引起对结构整体性、耐久性和强度有影响的混凝土裂缝。防止这种裂缝的产生和对已出现裂缝的有效治理是保证工程质量的关键之一。 裂缝原因和防止原则在大型设备基础的施工中,当混凝土内部温度变化和凝结收缩引起的变形受到约束时,浇筑块体内就要产生应力。当其中的拉应力超过混凝土材料的抗拉极限时就会出现裂缝。对变形的约束有两类情况:一是混凝土浇筑块体内部各质点间因变形量不同而产生相互牵制和影响,称为“自约束”;二是浇筑块体的变形受到外部物体(如地基、相邻结构、下部混凝土浇筑层等)的阻碍,称为“外约束”。 为防止裂缝的产生,应从以下几个方面考虑对策。(1)提高混凝土自身和混凝土结构的抗裂能力。施工中要严格控制材料和施工工艺,使结构质量完全符合设计和规范要求。(2)减少混凝土中的总发热量,降低水泥水化发热速率,合理调剂混凝土在凝结过程中的温度与湿度,以减小温度应力和收缩产生的应力。(3)减弱内、外约束的影响。(4)重视控制温度对防止裂缝产生的决定性作用,在基础施工的全过程中,按阶段进行温度应力分析,确定温度控制指标和技术措施。 沮控防裂措施包括基础设计、混凝土配制、混凝土浇筑与养护、施工中混凝土温度监测四个方面。 基础设计主要措施有:(1)基础混凝土的强度等级应为C巧一C25。(2)对独立的大型钢筋混凝土设备基础不设沉降缝、温度缝等永久变形缝。(3)当基础设置于岩石地基上时,在混凝土垫层上表面应设滑动层(可采用一毡二油构造),以减少地基对混凝土变形的约束。(4)基础配筋除应满足基础承载力及构造要求外,还要增配承受因水泥水化热引起的温度应力及控制裂缝开展的构造钢筋。 混凝土配制主要措施有:(1)选定混凝土配合比时,应在保证基础强度、耐久性和施工工艺要求的前提下尽量减少水泥用量,以降低混凝土的绝对温升值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条