1) Fractional Semiring and Properties

分式半环及性质
2) fractional semiring

分式半环
1.
The concept and the universal property of fractional semiring are given.

给出了分式半环的概念和泛性质。
3) Rough Properties in Semirings

半环的粗糙性质
4) Several Kinds of Semigroups and Their Properties

几类半群及其性质
5) The Definition and Properties of Pre-semi-convex Sets

准半凸集及其性质
6) semiprime ring

半质环
1.
There are two commutativity theorems on ring as follows: 1)Let R be semiprime ring for any x,y∈R,there exist integers m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t],such that fx,y(xmy)-yxn∈Z(R) or fx,y(yxm)-yxn∈Z(R),then R is commutative.
给出下列交换性定理1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环。
2.
Some centre elemene and commutativity theorems of semiprime rings are given, some results in paper [2, 3] are extened.
给出半质环的中心元与交换性的几个定理,推广了文献[2,3]中的结果。
3.
We get some new results on commutativity of rings by studying the K?the semisimple ring, semiprime ring and arbitrary ring.
本文通过对Kothe半单纯环、半质环乃至任意环的研究,得到了一些环的交换性条件。
补充资料:分式
有除法运算,而且除式中含有字母的有理式。如,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条