2) homogeneous state-vector equation

齐次状态向量方程
1.
To simplify the solution of the homogeneous state-vector equation of electromagneto-thermoelastic shell,the non-homogeneous state-vector equation was firstly derived from the generalized H-R variational formulation for electromagneto-thermoelastic material.
为简化求解电磁热弹性壳齐次状态向量方程的方法,先通过电磁热弹性材料广义的H-R变分原理推导了非齐次的状态向量方程,进一步考虑热平衡方程与导热方程中变量的对偶关系,通过增加方程的维数,将非齐次方程转化为能独立求解的齐次方程。
3) Non-homogeneous state-vector equation

非齐次状态向量方程
4) homogeneous vector

齐次向量
1.
This paper proves the imporant Pappus principle in the plain geometry by using the concept of homogeneous vector and the famous :agrange indentical equation.
在引进“齐次向量”概念的基础上,利用著名的Lagrange恒等式,证明了平面射影几何中重要的Pappus定理。
6) homogeneous equation

齐次方程
1.
The treatment,by which the non-homogeneous equation was transformed into homogeneous equation,not only simplifies.
将非齐次方程转化为齐次方程不仅使问题变得大为简化,同时也减少了数值计算的工作量。
2.
Considering the symplectic relations of variations in the thermal equilibrium formulations and gradient equations,the non-homogeneous Hamilton canonical equation was transformed into homogeneous equation for solving independently the coupling problem of piezothermoelastic bodies by increasing the dimensions of the canonical equation.
考虑热平衡方程与导热方程中变量的对偶关系,通过增加正则方程的维数,成功地将非齐次的正则方程转化为能独立求解的压电热弹性体耦合问题的齐次方程。
3.
First of all,a non-linear Schrodinger equation can be converted into homogeneous equations,and then the precise integration method can be used to solve these problems.
首先将非线性薛定谔方程变形为齐次方程的形式,然后用精细积分法模拟其随时间的演化过程。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条