2) RTSM
辐射时间序列法
1.
Two methods for performing hourly room air-conditioning cooling load calculations are compared,that is the transfer function method(TFM)and the radiant time series method(RTSM).
比较了房间空调逐时冷负荷的两种计算方法——Z-传递函数法和辐射时间序列法。
3) radition time
辐射时间
1.
Experiment and research on influence factors of wastewater treatment by ultraviolet disinfection,and come to conclusion that relations of radition intensity,turbidity,radition time,water thickness and total coleocele livability.
探讨了紫外线消毒在污水处理中的影响因素,并得到了辐射强度、浊度、水层厚度、辐射强度和辐射时间与总大肠菌群存活率之间的关系,为消毒器的设计提供依据。
4) time series
时间序列
1.
Hybrid time series predictive control model for silicon content in blast furnace hot metal;
高炉硅含量预测控制的时间序列混合建模
2.
A new approach to trend extrapolation of time series of ecological footprint and its application;
生态足迹时间序列趋势外推分析的一种新方法及其应用
3.
Fractal characteristics and R/S analysis of time series of natural hazards;
自然灾害发生时间序列的分形特征及R/S分析
5) time-series
时间序列
1.
A time-series study on the association of stroke mortality and air pollution in Zhabei District, Shanghai;
上海市某区居民脑卒中死亡与大气污染关系的时间序列研究
2.
A Time-series Study on the Relationship Between Gaseous Air Pollutants and Daily Mortality in Shanghai;
上海市大气气态污染物与居民每日死亡关系的时间序列研究
3.
Online Heuristic Algorithm of Representation for Time-series Based on Polygonal Boundary Reduction;
基于多边形边界约简的启发式在线时间序列表示算法
6) time sequence
时间序列
1.
Apply time sequence model to predict and control spinning tension;
运用时间序列模型预测和控制纺纱张力
2.
Process of laser gyro drift data base on time sequence model;
基于时间序列模型的激光陀螺随机漂移数据处理
3.
Study on information mergence of road construction machinery group based on time sequence;
筑路机械机群基于时间序列的信息融合研究
补充资料:时间序列法
利用按时间顺序排列的数据预测未来的方法,是一种常用的趋势法。事物的发展变化趋势会延续到未来,反映在随机过程理论中就是时间序列的平稳性或准平稳性。准平稳性是指时间序列经过某种数据处理(如一次或多次差分运算)后变为平稳的性质。时间序列有 4种变动因素:①长期趋势(T),在整个预测期内事物呈现出渐增或渐减的总倾向;②周期变动(C),以某一时间间隔为周期的周期性变动,如危机和复苏的交替;③季节变动(S),以一年为周期的周期变动,如服装行业销售额的季节性波动;④偶然变动(I),除上述三种情况之外的不规则变动,又称随机变动。这4种因素的综合模式有加法模式、乘法模式和混合模式。若以yt表示时间序列(t=1,2,3,...,表示采样时刻),则加法模式的时间序列yt是上述4种变动因素的相加,yt=(T)+(C)+(S)+(I),而乘法模式的yt则是上述4种变动因素的相乘,yt=(T)×(C)×(S)×(I)。时间序列法分为两类:①不细分4种变动因素而直接利用时间序列数据建立数学模型,进行预测。②对4种变动因素有侧重地进行预处理,从而派生出剔除季节变动法、移动平均法、指数平滑法、自回归法、时间函数拟合法等具体预测方法。
剔除季节变动法 对于明显地存在着季节性变动因素的时间序列数据,通常是先剔除季节性因素,找出平稳值和季节性修正系数。在平稳值预测基础上加以季节性修正,就能获得计及季节性变动的预测。以服装业为例,如果1981、1982和1983年1月份的销售额分别是40.0、32.9和37.4,平均值为36.77;三年内总计每月平均为51.18,则可得1月份的三年平均指数为36.77/51.18=0.718。若剔除季节性变动因素,则1981、1982和1983年每年1月的平均值分别为40.0/0.718=55.7;32.9/0.718=45.8;37.4/0.718=52.1。依此类推,可求出各年各月的平稳值(见图)。图中实线为实际销售值,虚线为剔除季节变动后的平稳值。此外也可按每年12个月的平均值作为各年平稳值的基准,按乘法模式或加法模式提取出季节性变动分量,按照各年基准值预测未来年基准值,然后计及季节变动分量加以修正,即得未来预测值。
移动平均法 又称滑动平均法,对于存在着偶然变动因素的较为平稳的时间序列,可以采用这种方法来剔除偶然变动因素,以对平稳的时间序列作出预测。基本方法是利用紧挨着预测期前的一段时间序列数据(如有m个数据),按某种规则求平均值,作为预测值。当预测期在时间上移动时,所采用的时间序列数据(m个数据的个数不变)也随着在时间上移动。其中一次m元移动法适用于接近平稳的恒定过程;二次m元移动平均法适用于线性增长或衰减过程。
指数平滑法 加权移动平均法的一种(见平滑法)。
自回归法 利用紧挨着预测期前的一段时间序列数据,分别乘上某个系数后叠加求得,用以剔除偶然变动因素。
时间函数拟合法 变量变化规律符合某一时间函数,利用采样数据进行拟合,确定参数,而后外推预测。其中常用的为多项式形式。
参考书目
N.T.Thomopoulos著,刘涌康等译:《实用预测方法》,上海科技文献出版社,上海,1980。(N.T.Thomopoulos,Applied Forecasting Methods,Prentice-Hall,Englewood Cliffs, 1980.)
剔除季节变动法 对于明显地存在着季节性变动因素的时间序列数据,通常是先剔除季节性因素,找出平稳值和季节性修正系数。在平稳值预测基础上加以季节性修正,就能获得计及季节性变动的预测。以服装业为例,如果1981、1982和1983年1月份的销售额分别是40.0、32.9和37.4,平均值为36.77;三年内总计每月平均为51.18,则可得1月份的三年平均指数为36.77/51.18=0.718。若剔除季节性变动因素,则1981、1982和1983年每年1月的平均值分别为40.0/0.718=55.7;32.9/0.718=45.8;37.4/0.718=52.1。依此类推,可求出各年各月的平稳值(见图)。图中实线为实际销售值,虚线为剔除季节变动后的平稳值。此外也可按每年12个月的平均值作为各年平稳值的基准,按乘法模式或加法模式提取出季节性变动分量,按照各年基准值预测未来年基准值,然后计及季节变动分量加以修正,即得未来预测值。
移动平均法 又称滑动平均法,对于存在着偶然变动因素的较为平稳的时间序列,可以采用这种方法来剔除偶然变动因素,以对平稳的时间序列作出预测。基本方法是利用紧挨着预测期前的一段时间序列数据(如有m个数据),按某种规则求平均值,作为预测值。当预测期在时间上移动时,所采用的时间序列数据(m个数据的个数不变)也随着在时间上移动。其中一次m元移动法适用于接近平稳的恒定过程;二次m元移动平均法适用于线性增长或衰减过程。
指数平滑法 加权移动平均法的一种(见平滑法)。
自回归法 利用紧挨着预测期前的一段时间序列数据,分别乘上某个系数后叠加求得,用以剔除偶然变动因素。
时间函数拟合法 变量变化规律符合某一时间函数,利用采样数据进行拟合,确定参数,而后外推预测。其中常用的为多项式形式。
参考书目
N.T.Thomopoulos著,刘涌康等译:《实用预测方法》,上海科技文献出版社,上海,1980。(N.T.Thomopoulos,Applied Forecasting Methods,Prentice-Hall,Englewood Cliffs, 1980.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条