1) Tchebyshev-Padérational polynomial

Tchebyshev-Padé有理多项式
2) Tchebyshev polynomial

Tchebyshev多项式
1.
Then using Tchebyshev polynomial to approximate circular arcs, the arbitrary order Bézier polynomial approximation of circle is obtained by transformation of Tchebyshev-Bernstein polynomial basis, and we also use this circular arcs approximation method to obtain an offset approximation curve which has the same degree and the same form with the base curve.
首先提出了基于参数速度模的Tchebyshev逼近和Tchebyshev-Padé逼近方法:利用Tchebyshev多项式和Tchebyshev-Padé有理多项式去逼近Said-Bézier曲线参数速度模,同时在此基础上得到了Said-Bézier曲线的等距曲线的两种有理逼近函数。
3) Tchebyshev-Padéapproximation

Tchebyshev-Padé逼近
1.
Both the Tchebyshev approximation and the Tchebyshev-Padéapproximation of parametric speed of Said-Bézier curves are presented and two rational approximation functions of the offset curves of Said-Bézier curves are also obtained.
等距曲线逼近的关键在于对其参数速度的逼近,给出了Said-Bézier曲线参数速度的Tchebyshev逼近和Tchebyshev-Padé逼近,在此基础上得到了Said-Bézier曲线的等距曲线的2种有理逼近函数。
4) rational Polynomial

有理多项式
1.
In this paper,an algorithm for linear programming basis iteration with continuous variable parameters is discussed,and the problem in expression in computerization of the rational polynomials appeared in the computing process is discussed.
本文讨论了线性规划基迭代中含连续可变参数的计算方法和对计算中出现的有理多项式在计算机上处理的表达方式问题。
5) triple Hermite-Padé approximation's polynomials

三次Hermite-Padé逼近多项式
6) rational fraction polynomials

有理分式多项式
1.
The equations will be ill-conditioning when the polynomial order is large in the course of establishing structural frequency response function with rational fraction polynomials.
针对在借助有理分式多项式构建结构频响函数的分析模型的过程中由于负频率引入的虚拟测点将导致方程式在多项式阶次较高时出现病态的问题,对实域离散点列上的正交多项式进行了推广,得到傅氏域离散点列上的正交多项式。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条