1) noise-measured function
噪声度量函数
2) noise energy function
噪声能量函数
3) noise function
噪声函数
1.
Application of noise functions to the wood texture;
噪声函数在木纹纹理中的应用
2.
Using the noise function of the software package and combining with the AD/DA technology,the signal is added a noise in.
用软件工具包的噪声函数,结合AD/DA技术,对信号进行加噪。
4) noise psophometric weighting function
噪声测量加权函数
5) noise base function
噪声基函数
1.
Based on the adaptive noise canceling technology,a neuron-based approach which can rebuild the noise adaptively by using the combination of noise base function is proposed.
基于噪声抵消技术 ,提出了用噪声基函数和神经元自适应重构噪声 ,用于噪声抵消 并按此法应用于电网中谐波电流的自适应检测 仿真证明了该方法的有效
6) noise visibility function
噪声可见性函数
1.
Research of Image Steganographic Method Based on Noise Visibility Function and Substitution Table;
基于噪声可见性函数和替换表的图像隐写方法研究
2.
An channel selection method based on tolerable noise was put forward, from the image itself future, every channel s maximum watermark amplitude can be obtained while meeting conditions of invisibility as well as combining with human visual system and noise visibility function.
该文提出了一种基于噪声允许的信道选择方案,根据图象自身特点,结合人眼视觉模型和噪声可见性函数,找出了在满足不可见性条件下每个信道可嵌水印的最大强度。
3.
The method uses the Noise Visibility Function to analyze the resistance ability of noise for each coefficient after the discrete wavelet transform,and then more than one bit is embedded into the coefficient with a stronger resistance ability of noise at the same time according .
该算法用噪声可见性函数对小波分解后的系数进行容噪能力分析,根据划定的阈值在容噪能力较强的系数上同时嵌入多个比特,并结合小波域视觉可见误差门限JND值,实现了水印强度的自适应调整。
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条