3) traffic zone
交通小区
1.
Calculating method of traffic zone radius in city based on inner trip proportion;
基于区内出行比例的城市交通小区半径计算方法
2.
Research on Some Technology of Traffic Zone in Transportation Planning;
交通小区在交通规划中若干技术问题的研究
3.
Study on traffic zone division based on spatial clustering analysis
城市道路网络交通小区划分方法研究
4) area location
交通区位
1.
Highway network layout of the city groups based on the layout method of node important degree with area location;
基于节点重要度交通区位布局法的城市群公路网布局研究
2.
Based on the traditional road passageway planning theory and method analysis,integrating quantitative with qualitative,the layout method was applied to combine node important degree with area location to the layout of roads link provinces.
基于传统公路通道规划理论和方法,采用定性与定量相结合的方法,对省际公路布局采用节点重要度区位联合的布局方法,既克服了交通区位理论量化程度差的缺点,也克服了重要度法对于过境交通需求引起的树状路网的附加联络线的确切意义论述不充分的不足。
3.
In chapter III, the paper established both the assessment systems of road construction and node importance based on the methodologies of node importance and area location; in chapter IV, the paper calculates the weighing via entropy and AHP firstly.
其中,第三章结合节点重要度和交通区位理论的思想,建立了道路节点重要度以及道路建设的评价指标体系;第四章综合熵值法和层次分析法分别计算了各指标的权重系数,然后通过研究各道路项目与最理想道路项目和最不理想道路项目的模糊关联性来计算各条道路项目的综合重要程度;第五章使用动态聚类法将各道路项目的综合重要度进行聚类分析,并提出聚类结果的评价方法,最终得到城市道路建设的计划方案。
5) Traffic Location
交通区位
1.
Urban Rail Transit Route & Network Planning Based on Traffic Location Method;
交通区位法规划城市轨道交通线网
2.
Research on Planning of Highway Transportation Junction Based on Importance of Nodes and Traffic Location;
基于节点重要度与交通区位的公路运输枢纽布局研究
3.
Through considering the level of economic development,the characteristics of industrial layout,future economic development strategies,development of the road network and many other factors,and combining traffic location method with node important degree method,the distribution of expressway network in Shanxi Province is discussed.
综合考虑山西经济发展水平、产业布局特点、未来经济发展战略、路网发育形态等诸多因素,采用交通区位法和节点重要度法相结合,对山西省高速公路布局进行探讨。
6) Traffic of Residential District
住区交通
补充资料:区间
表示实变量x的取值范围。设a、b是两个实数,且a<b,满足a<x<b的实数x的集合记为(a,b)或]a,b[,称为开区间;满足a≤x≤b的实数x的集合记为[a,b],称为闭区间。满足a≤x<b或a<x≤b的实数x的集合,分别记为[a,b)、[a,b[或(a,b]、]a,b],称为半开半闭区间。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条