说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 量化秩
1)  rank quantization
量化秩
1.
The rank quantization(RQ)nonparametric detector plays an important role for target detection in actual radar system.
非参数量化秩(RQ)恒虚警率检测器在雷达目标检测中占据着重要的地位,本文采用解析的方法分析了量化秩检测器在韦布尔分布中的检测性能,并考虑了均匀杂波背景和多目标环境情形,目标模型为Swerling II型。
2)  Rank quantity detector
量化秩值检测器
3)  rank statistic
秩统计量
1.
The probability density function and joint probability density function of rank statistics for incomplete interval censored data are established,including the formulas of mean ranks,median ranks and percent ranks of rank statistics;furthermore,the means,variances and covariances of statistics for incomplete interval censored data are given in the paper.
建立了不完全区间数据秩统计量的概率密度函数和联合概率密度函数,给出了其平均秩、中位秩和百分位秩以及不完全区间数据统计量的均值、方差和协方差计算公式。
2.
The joint probability density function of rank statistics for incomplete data is presented, and the formulas of means, variances and covariances of order statistics for incomplete data are established in this paper.
针对工程上存在大量不完全数据的情况,本文建立了不完全数据秩统计量的联合概率密度函数,给出不完全数据顺序统计量的均值、方差和协方差计算公式,提出不完全数据最佳线性无偏估计方法,并对正态分布、Weibull分布等位置-尺度分布进行了详细讨论。
3.
It is explored an approach to analyze panel data,using by rank statistics.
将横剖面数据的秩统计量应用于平行数据资料,分析平行数据的整体变化趋势和每个变量的变化趋势及多个变量所具有的共同规律性等。
4)  rank variates
秩次变量
1.
Two rank variates nij and n ij for the i th variety in the j th environment, four nonparametric statistics, Pi , P i, Si and Dj were introduced to describe the basic characteristics of wheat regional trial data of the Northeast early-maturing group in 2002.
运用秩次变量nij和n'ij,非参数统计量Pi、P'i、Si和Dj描述2002年国区东北春小麦早熟旱地组区试资料的基本特征。
2.
Two rank variates n ij and n ′ ij for the i th variety in j environment,and four nonparametric measures P i,P ′ i,S i and D j were introduced to describe the basic characteristics of mungbean regional trial data at whole nation in 2001.
应用秩次变量 nij和 n′ij,非参数统计量 Pi,P′i,Si 和 Dj描述了 2 0 0 1年国家绿豆品种区试资料的基本特征 ,并对参试品种进行综合评判。
5)  rank statistics
秩统计量
1.
In this paper,we use two sample rank statistics and order statistics to form a new estimate of the two CDF s crossing point,and prove the strong consistent and approximate normality of the estimate.
利用两样本的秩统计量和次序统计量,对两连续分布交点提出了一种点的估计量,并论证了点估计的强相合性及渐近正态
2.
Based on rank statistics, new distribution-free tests on the crossing point between two distribution functions are proposed.
本文基于秩统计量,提出了一种新的分布自由检验,用此可来检验两个生存函数可能存在的交点,如果检验认为交点存在,文中又提出了两种新的点估计与区间估计方法,这些估计量都具有渐近相合性与渐近分布自由性质,本文作了一些模拟显示,文中的检验方法与文献中已有的方法相比具有较高的检验效率。
6)  rank vector
秩向量R
1.
It has primarily been dealt with that in which condition rank vectors based on depth function have a uniform distribution over R,which proves that asymptotic normality of linear rank statistics SN remains true.
初步论述了基于深度函数D的秩向量R 在何种情况下服从R上的均匀分布,从而说明线性秩统计量SN的渐近正态性仍成立,然后利用这一性质讨论了多维随机向量的独立性检验,两样本位置与刻度问题,并粗略讨论了检验的功效与分布的关系。
补充资料:秩统计量


秩统计量
rank statistic

  定义的向量R和l=(1,…,的间的K七以玩11等级相关系数(K治n血Ucoefficientofra泳correlation)下,是秩统计量的典型例子.所谓线性秩统计量在一切秩统计量类中占有特殊位置,其定义如下.设A一“a(i,j)“是任一n阶方阵.那么,统计量 T二艺。(i,尺、) ‘二}称为线性秩统计量(linear屁Lnk statistic).例如,由公式 12矛了.。十1、/_。+1、 n Ln一1)压’、艺/、一乙/定义的SP岌lm迢n等级相关系数(SP“In们日n“兄ff沁ientof扭nkco】祀lat10n)p就是线性秩统计量. 线性秩统计通常计算简便,其概率分布也不难求得.正因如此,秩统计量在线性秩统计量族中投影的概念,在秩统计量理论中起重要作用.设T是基于随机向量X的一秩统计量,关于其概率分布提出假设H。,则在H。成立的情形下使E{(T一分)’}最小的线性秩统计量全一于(R),称为秩统计量T在线性秩统计量族中的投影(projeCtion).通常,投影T可以相当好地逼近秩统计量T,且当n一,闺时差T一T可以小到忽略不计.在假设H。:“随机向量X的分量X,,…,戈是独立同分布随机变量”成立的情形下,秩统计量T的投影T由以下公式确定: 卜卫二工夕舀‘,.;卜(。一2)。、T,.(*) n召.1其中d(i,j)=E笼TIR,=j},1蕊i,j毛n(见11]). 在秩统计量;与p之间存在内在联系.在「1]中证明,Ken(坛11系数:在线性秩统计量族中的投影于,精确到一个常数因子与Spe比n们以n系数p等同;具体地,有 2,,.1 T=母(l+二〕P. 3、一n由此等式,可见p和T间的相关系数(印n℃h石。n以犯f-士元iex止) 一‘一,一漂一法粉告~,即对于充分大的n,秩绷七量p和:渐近等价(见〔21).秩统计且t门nk血血血;pall印。朋cT姗c~〕 由秩向纽(花nkw别Dr)构造的统计且(statistic).如果R=(R,,…,R,;)是基于随机观测向量X二(X;,…,戈)的秩向量,则作为R的函数的任何统计量T二T(R)称为秩统计量(mnk statistic).由公式 ;一丁吕下艺。枷(‘一j)s咖(;,一:,) n气n一l)*丙----
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条