1) sample projection distribution
样本投影分布
1.
Balanced and imbalanced data sets classification based on sample projection distribution
基于样本投影分布的平衡不平衡数据集分类
2) projective distribution
投影分布
1.
One sufficient and necessary condition is obtained for normal projective distribution through generalization of the conclusion in the literature[1], which provides a fact of abnormal population density in n-dimensional Euclid space and normal projective density in any proper subspace by means of projective search.
文献[1]通过投影寻踪方法得到了一个在n维空间的总体密度为非正态,而在任意维真子空间上的投影分布为正态的例子。
3) distribution of training examples
样本分布
1.
By the method of estimating the probability distribution of training examples,a new and simple method of dealing with numeric attribute based on example distribution and entropy is turned out.
论文分析了基于熵的离散化方法的不足,从估计训练样本的概率分布的角度出发,提出基于样本分布与熵相结合的处理数值型属性的方法。
4) largesample distribution
大样本分布
5) projective feature
投影分布特征
6) Imbalanced data distribution
样本非均匀分布
补充资料:沿直线衰减分布的投影
沿直线衰减分布的投影
物理学术语。一束连续X线光谱在穿经非均匀介质路径上的总衰减或总吸收。与单色X线束穿经均匀介质时的衰减情形相比,在穿经非均匀介质时,由韧致辐射产生的全色X线衰减变化表现为一复杂的函数关系。人体组织为非均匀介质,不同位置上的线性衰减系数不同。但可以假
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条