1) inverse index transform
下标逆变换
1.
The inverse index transform formulae of a Row-compressed symmetric matrix were derived and proved with the help of the Lemma,which reduces the time complexity from O(n2) to O(1).
证明了整数环误差引理,进一步证明了对称阵行压缩的下标逆变换公式,这将其解压缩算法的时间复杂度从O(n2)降低到O(1)。
2) subscripts transformation
下标变换
3) HD/SD up/down conversion
高标清上/下变换
4) Robot coordinate inversion
机器人坐标逆变换
5) Laplace inverse transformation
Laplace逆变换
1.
Solution of detention-including Laplace inverse transformation;
含有延迟的Laplace逆变换的求解
2.
By using Laplace inverse transformation method, a two-dimensional time-dependent partial differ-ential equation for crystal growth is analyzed and the solution is obtained.
对定常速度下二维非稳态晶体生长的数学模型进行了分析,证明了解的唯一性,并运用Laplace逆变换法对该定解问题进行求解,最后给出了一个具体的例子。
3.
Based on the generation theorem in terms of the Laplace transformation and the properties of exponentially bounded integrated C-semigroups,the Laplace inverse transformation for exponentially bounded integrated C-semigroups is deduced.
以积分C半群生成定理的Laplace刻划为基础,利用积分半群的性质,推导出指数有界积分半群的一种表达形式——Laplace逆变换形式。
6) inverse mapping
逆变换
1.
On the basis of the available finite element model with respect to the composite rock mass and bolt,by means of isoparametric inverse mapping,the model is further discussed after taking general conditions into account,and make it have more extensive uses.
在现有的岩锚组合的有限元模型的基础上,利用等参逆变换方法,对这种单元的一般的情况做了进一步的探讨,使其更具有广泛的适用性。
2.
There is no explicit formulation of inverse mapping about the isoparametric element, so inverse mapping is avoided in finite element analysis.
由于等参元不存在逆变换的显式 ,所以在有限元分析的列式中都回避等参元逆变换 。
补充资料:标度变换
所谓标度变换通俗地说就是放大或缩小也即码尺的变换,对分形来说用不同的码尺所测得的结果,有随码尺的变化而变化的,也有随码尺的变化而不变的。分形理论就是基于对事物在不同标度变换下的不变性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条