1) coordinate system conversion error

坐标系转换误差
1.
The key problem in the high-precision borehole three-component magnetic measurement has been successfully solved by the authors,and the coordinate system conversion error is 8-20 nT,with the accuracy 20-30 times higher than the accuracies of the existing products.
坐标系转换误差为8~20 nT,比现有产品精度高达20~30倍。
2) transformation coordinate error

转换坐标误差
4) coordinate system conversion

坐标系转换
1.
Research about independent coordinate system conversion from Gaussian coordinate system

独立坐标系向高斯坐标系转换的研究
2.
This paper introduces the conception of five-face machining center coordinate system,and expounds the conversion method,the calculation of coordinate system conversion and edition mode of five-face machining center coordinate system.
介绍了五面加工中心坐标系的概念,对五面加工中心工件坐标系的转换方法、坐标系转换中的计算、编辑方式等做了阐述。
3.
The search beam stabilization technique and the concerned coordinate system conversion are key techniques of self-propelled antiaircraft weapon system equipped with the vehicular search radar.
搜索波束稳定技术及相关坐标系转换是装备了车载搜索雷达的自行防空武器系统的关键技术之一。
5) coordinate transformation

坐标系转换
1.
The realization and scheme application of coordinate transformation based on IERS 2003;

基于IERS 2003规范的坐标系转换实现及其方案应用
2.
Inference of coordinate transformation and simulated closure;

就WGS - 84坐标系下的GPS数据向国家坐标系或某局部坐标系转换过程中 ,转换参数及其精度的确定进行了探讨 ,并阐述了一种坐标拟合的方法。
6) Celestial coordinate system-error

天球坐标系-误差
补充资料:坐标
坐标
coordinates :
的APOnonlus就已用现在所谓的坐标(这一术语是由G.Leibniz于1694年给出的)定义了二次曲线,尽管Apellonius的坐标没有数值.到了公元二世纪,Rolemy在他的《地理学》《〔沁ography)中已开始把数值坐标用于纬度和经度.14世纪,N.Oresme把坐标用于平面来构作图形,并用术语经度和纬度表示了现在所谓的横坐标和纵坐标. 避免“无中生有”地引人坐标,以保持理论的“纯悴性”,此类尝试未证明其本身的正确性(例如,由Ch.von Staudt(1847)提出的射影坐标(projective叨roii-nates)综合构造法,证明可被简单代数等价物所替代,这导致了可除环上射影几何的概念).然而,这一思想仍在继续,可称之为引人坐标的内在方法(以区别于“无中生有”强加坐标的外来方法),它基于计算目标的位置而配之以关于某些预先选择的标准子集的坐标,这种子集如曲线、曲面等(相应称坐标曲线似)叮dinate curves)、坐标曲面(~dinates、,r-fa岛),等等).这特别适用于其定义涉及数的集含(如度量空间及向量空间),并因此适用于很广泛的有实际重要性的数学对象;这说明了为什么这种方法是如此流行. 线性坐标在有关点的坐标系(点坐标(POint伽r由-nates))中具有特殊的位置.对于这种坐标,其坐标曲线是直线,比如。,国n留直角坐标系(Ca比昭助()咐K)-g川al~rdinate systeln),一二角形坐标系(见四面体坐标(tetrahedral姗rdinates)),重心坐标(bary联:n-trie姗rdinates)和射影坐标‘projective coordlnat〔5).坐标曲线不都是直线的坐标系即为曲线坐标.曲线坐标用于平面L(如极坐标(pol盯咖rdinates);椭圆坐标(elliPtie coordinates);抛物线坐标(Par:,belic姗rdinates);双极坐标( bipolar拟)rdinates))和曲面_l:(测地坐标(罗记esie coord,nates);等温坐标(1、o-the皿al coordinates)等等).人们在使用满足各种条件的曲线网时,引入了许多特殊类型的曲线坐标系,这种坐标系中最重要的一类是正交系(orthogonal sys-tem),其坐标曲线相交成直角. 平面(或曲面)上各种类型的坐标,可以推厂一到(三维)空间.例如,从平面极坐标可以产生空间极坐标的概念(球面坐标(s pheri以l姗rdinates)或柱面坐标(卿-Un山r伽rdinates));从平面双极坐标可以导出回环坐标(toroldal coordinates)、双柱面坐标(bi卿】l。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条