说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 秩恒等式
1)  rank identity
秩恒等式
1.
Based on the additivity of rank of generalized Schur complement,Shi Jimin showed the rank identity of matrix power whose index is natural number.
史及民应用广义Schur补的秩的可加性,给出了所有指数都是自然数的矩阵方幂的秩恒等式
2)  rank equality
秩等式
1.
We amend a rank equality for involutory matrices from a simple rank identical equality for any matrices.
从一个简单的对任意矩阵都适用的矩阵秩恒等式出发,对一个对合矩阵秩等式进行修正,结果表明它是对任意矩阵都成立的恒等式;作为应用,还推广一个已有的幂等矩阵的秩等式。
3)  characteristic equaltiy of rank
秩特征等式
4)  Kaya identity
Kaya恒等式
1.
China's CO 2 emissions change during 1971-2005 was analyzed by using Kaya identity in combination with the evolution of macroeconomic background.
利用Kaya恒等式结合宏观经济背景的变迁,对1971—2005年期间影响中国CO2排放量的因子展开分析。
2.
The paper firstly describes Kaya Identity and its policy implications.
在讨论Kaya恒等式及其政策涵义的基础上,利用修改后的Kaya恒等式对1971-2005年期间中国的CO2排放进行了无残差分解,并结合宏观经济背景的变迁对从"四五"到"十五"计划期间的排放变化展开详细分析,结果表明经济的快速发展和人口的增长是CO2排放增加的主要驱动因素,能源效率的提高有利于减少CO2排放,而能源结构的低碳化则是降低CO2排放水平的重要战略选择,最后强调指出加快产业结构调整、发展高能效技术以及清洁燃料技术等政策选择不仅能促进"十一五"期间单位GDP能耗降低20%约束性目标的实现,而且也能有效减少中国CO2的排放量,为减缓气候变化做出贡献。
3.
In this paper,a decomposition model based on the extended Kaya identity was established,and impacts from economic scales,population sizes,industrial structures,energy mix and energy efficiency on carbon emission were examined in detail with the LMDI method.
本文综合考量经济产出规模、人口规模、产业结构、能源结构及能源效率等因素对碳排放的影响,基于扩展的Kaya恒等式建立因素分解模型,应用LMDI分解方法对能源消费碳排放进行因素分解。
5)  identity [英][aɪ'dentəti]  [美][aɪ'dɛntətɪ]
恒等式
1.
On an identity of primitive function S_p(n);
一个关于原数函数S_p(n)的恒等式
2.
An Identity on Brewer Sums;
关于Brewer和的一个有趣恒等式
6)  identical equation
恒等式
1.
Utilizing identical equation method to construct unit s shape function;
用恒等式法构造单元的形函数
2.
The technique about some mathematical identical equation;
关于某些数学恒等式的证明技巧
3.
A beautiful identical equation of the vector of the tetrahedrom;
关于四面体的一个向量恒等式
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条