1) four-order Taylor expansion

四阶泰勒展开法
1.
The calculation of attitude matrix\'s quaternion differential eguations adopt four-order Range-Kuttle method commonly in strapdown inertial navigation system(SINS),Considered precision and speed,another effective method-four-order Taylor expansion is presented.
在捷联惯导系统中,姿态矩阵的四元素微分方程求解一般采用四阶龙格-库塔法,从运算精度与速度上考虑,提出了另一种有效的四阶泰勒展开法。
2) Taylor expansion

泰勒展开法
1.
Several enconomical methods in difference computation,which include the method of Taylor expansion, the splitting method, the method of compensated computation in deducted region, the method of self-controled time step, are discussed on the basis of difference scheme of explicit and complete square conservation.
其中包括:泰勒展开法、原始分解算法、区域“扣除──补偿”法以及自动调节步长法。
2.
Based on traditional three-order recursive Taylor expansion and four-order Range-Kuttle method,another effective method four-order Taylor expansion was proposed.
姿态算法是捷联惯导系统的关键部分之一在对传统三阶泰勒展开法和四阶龙格-库塔法分析的基础上,提出了另一种更有效的四阶泰勒展开法,并在典型圆锥运动环境下,对3种算法进行了姿态角误差仿真分析,从运算精度与速度上考虑,得出四阶泰勒展开法比三阶泰勒展开法和四阶龙格-库塔法都更具优势,为姿态算法的研究提供了参考。
3) the second Taylor series

二阶泰勒展开
4) the second-order Taylor expansion

二阶泰勒展开式
1.
As the manual correction of wind farm penetration is hard to reach the limit,this paper introduces a search method based on the second-order Taylor expansion for calculating the wind farm penetration.
因此,通过二阶泰勒展开式的近似方法,将计算风电穿透功率极限的约束函数作近似等效,再应用求解二次方程去逼近真实解。
5) Taylor series expansion method

泰勒级数展开法
1.
Taylor series expansion method for TM mode of polymer waveguide M-Z modulator;

聚合物波导M-Z调制器TM模的泰勒级数展开法研究
2.
A further study was made on the deficiency of Taylor series expansion method taking Probability Integral Method as an example.
以概率积分法为例对泰勒级数展开法的不足进行了深入研究。
6) method of Taylor expansion

泰勒式展开法
1.
After using of some important limits in Advanced Mathematics,we may choose one of the methods in computation,such as method of improvisation and method of replacement with equivalent infinitesimal and method of Taylor expansion,to g.
当该条件不满足时,洛必塔法则不能直接使用,可借助高等数学中的重要极限,选择凑构法、等价无穷小替换法及泰勒式展开法等来计算,从而巧妙地得到问题的解。
补充资料:上行展开法
分子式:
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条