说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 同余式组
1)  system of congruence
同余式组
1.
In this paper,we proved the Chinese Remainder Theorem under the condition of modules by Kuangzheng\'s method,and gave a easily way to resolve the system of congruences.
作者利用这个方法证明了一般情形下(即k(k≥3)个模的情形)的"中国剩余定理",同时给出了一次同余式组的一种较为简捷易懂的解法。
2)  linear congruence expression series
一次同余式组
1.
With the help of constructing matrix and applying elementary transfor-mation, this paper gives the simple and useful solution of the following three prob-lems in elementary number theory:greatest common factor and its times sum, in-definite equation, linear congruence expression series.
本文借助构造矩阵和施行初等变换,为初等数论中以下三个问题提供了简便实用的解法:最大公因数及其倍数和、不定方程,一次同余式组
3)  covering congruence group
覆盖同余式组
1.
In this paper a kind of covering congruence group is constructed and with a method of classification for nonnegative integern.
建立了一类覆盖同余式组并通过对非负整数n进行分类等方法,给出使k·2n-1对每一非负整n均为合数的K值的计算。
4)  congruence aggregates
同余组
1.
By using the characterization of congruences on regular orthocryptogroups in terms of congruence aggregates, two important congruence lattices of regular orthocryptogroups are determined by means of diagrams, generators and defined relations respectively.
利用正则纯整群带上同余的同余组刻划,分别用图以及生成集和生成关系这两种方法,确定了正则纯整群带的两个重要的同余子
2.
This paper proves that the congruence lattice of a left C-semigroup is isomorphic to the lattice of all congruence aggregates for a left C-semigroup.
本文利用左C-半群的各个分量上的同余定义了它的同余组,由此刻划了左C-半群上的同余;证明了左C-半群的同余格同构于它的同余组格。
5)  congruent array
同余数组
6)  congruence [英]['kɔŋgruəns]  [美]['kɑŋgrʊəns]
同余式
1.
Some congruences concerning Euler numbers;
关于Euler数的一些同余式
2.
The note to the solutions of the congruence 2~(n-2)≡1(mod n);
关于同余式2~(n-2)≡1(mod n)的解的注记
3.
Solution on the congruence 2~n≡5(mod n);
关于同余式2~n≡5(mod n)的解
补充资料:同余式


同余式
congruence

研究既约剩余类的乘法群时用的一个重要概念是模m的原根〔pri川i之:ve toot).当汇a.阴)=l时,存在正整数下使丫二!几n袄KI爪),例如可取下二价(水).这种正整数中最小者称为数a对模,所属的指数 属于指数甲(川)的数(如果有这样的数存在的话)称为模m的原根(primitive rootm阅ulo阴).如果夕是一个模阴的原根,而夕取遍模中(m)的一个完全剩余系,那么丫取遍模阴的既约剩余系.因此,若(a,。)二!,则对集合0一,价(。)一!中某个7同余式a二口’《.llod爪)成立.此下称为数“模m关于底g的指数,并用符号ind“(更确切地,用ind。a)来表示.指数的性质与对数的性质很相似,原根仅对形如2,4,川以及2刀“的模用>l才存在,其中P)3为素数而:)1为整数.在这些情形模爪的既约剩余类的乘法群即为叫爪)阶循环群,在其他情形,既约剩余类群的构造要复杂得多, 数论中许多问题可归结为某种类型的同余方程是否可解因此,首先由C.F Gauss〔见!5})系统建立起来并用来作为经典数沦之基础的同余式理论,迄今己成为求解数沦问题的基本注二具之一就这,点来说.同余方程解数问题的研究对数论有极为重要的意义最简单类型的同余方和是含有一个未知数的一次同余方程a一、二b(m浏阴).一次同余方程的解数间题由如下的定理所完全解决设(“,。)二d那么当b不能被d整除时,同余方程a*二b(m叱。)无解,而当方是J的倍数时,这个同余方程恰有d个解. 以素数p>2为模的线性同余方程组 乏“厅一、三b‘modp)、二l,.,: 尹二}的可解性问题可以用任意域上的线性方程的一般理论来彻底解决合数模的情形可以化为素数模的情形. 按照研究的复杂性.二项同余式(t wo一term con-gruen“) 戈”二“戈mod川)梦1(a,m)“l时是接F来要讨论的含一个未知数的代数同余方程如果同余方程犷二“(m记胡)有解,则a称为模In的n次幂剩余(n一thpower residue modulo脚);如果无解,则a称为模,;,的八次幂非剩余扭一Lh power non-心id沈modu」o”;).特别地,场n二2时,剩余或作剩余称为是二次的(quadratic),当。二3时称为王次的(cublc),而当。二4时,称为双二次的(bi一quadra-t le). 以合数m二川‘p少为模的同余方程 /(一、)三。丈mod。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条