1) two side-by-side circular cylinders

横向排列双圆柱
1.
Numerical simulation of flow around two side-by-side circular cylinders at low Reynolds numbers by a POD-Galerkin spectral method
低Reynolds数横向排列双圆柱绕流的POD-Galerkin谱方法数值模拟
2) tandem circular cylinder pairs

横向双圆柱绕流
3) two side-by-side circular cylinders

并列双圆柱
1.
An experimental study on the characteristics of the flow field behind two side-by-side circular cylinders under passive wake control;
并列双圆柱尾迹被动控制中流场特性的实验研究
4) two circular cylinders in tandem

串列双圆柱
1.
The pressure distributions on the surfaces of two circular cylinders in tandem arrangement at Re=2×104 were simultaneously measured at 12 different distances,and integrated to acquire the time series of fluctuating lifts and drags.
本文在雷诺数2×104下,同步测量了12个不同间距下串列双圆柱的表面压力分布,积分得到脉动升、阻力的时间历程,并对前、后柱之间的脉动升、阻力以及脉动升阻力和圆柱表面的脉动压力进行了相关分析。
5) staggered cylindrical array

叉排圆柱阵列
1.
A staggered cylindrical array represents a major structural form of heat exchangers for a solar energy based thermal power station.
叉排圆柱阵列是大型太阳能热电站换热器的重要结构形式。
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条