1) maximal(minimal)subgroup
极大(小)子群
2) minimal subgroups
极小子群
1.
The minimal subgroups play an important role during the study of finite groups.
极小子群在有限群的研究中占据着重要的地位。
2.
To discuss the relations between the maximal or minimal subgroups of sylow subgroups and supersolvable groups.
研究Sylow子群的极大、极小子群与超可解群之间的关系。
3.
The influence of s-semipermutablity of maximal subgroups and minimal subgroups of Sylow subgroup of a finite group on its p-supersolvability are investigated.
本文研究Sylow子群的极大子群及极小子群的s-半置换性对有限群的p-超可解性的影响。
3) minimal subgroup
极小子群
1.
Finite groups with completely conditional permutable minimal subgroups;
极小子群完全条件可换的有限群
2.
The centralizers of minimal subgroups and p-solvability of finite groups;
极小子群的中心化子与群的p-可解性
3.
Hypercenter of minimal subgroups and nilpotent group;
极小子群的超中心性与幂零群
4) maximal subgroup
极大子群
1.
A type of maximal subgroups of special orthogonal groups over local rings;
局部环上特殊正交群的一类极大子群
2.
Classification of finite groups whose maximal subgroups are Dedekind groups.;
极大子群均为Dedekind群的群
3.
Characterization of Sporadic Simple Groups with the Orders of Groups and the Sets of Indexes of Maximal Subgroups;
用阶和极大子群指数之集刻划散在单群
5) maximal subgroups
极大子群
1.
On the Intersection of Two Special Maximal Subgroups;
两类特殊的极大子群的交
2.
On the s-θ-completions of maximal subgroups and the π-solvability of a finite group
有限群极大子群的s-θ-完备与π-可解性
3.
Studied the solvabilty of finite group by the theta pairs of only one special maximal subgroups,obtained a series of new results about the solvability of finite group.
主要研究有限群的某一类特殊的极大子群,并且考察这类极大子群的θ-子群偶对该有限群结构的影响,从而得出有限群可解的几个充分条件。
6) Minimal prime subgroup
极小素子群
1.
On the basis of the previous research result,a structure N=a~⊥of minimal prime subgroups for some spe- cial classes of l-groups is establisned in this artcle.
在l-群的极小子群研究的基础上就某些特殊类的l-群建立了极小素子群的一种结构N=a~⊥。
补充资料:单参数子群
单参数子群
one-parameter subgroup
单参数子群〔泄·脚.”州甘,魄”甲;呱”ou叩明eTp”-业一no月rpy,aJ,赋范域K上球群G的 域K的加法群到G的解析同态,即解析映射献K~G,满足 。(s+r)二:(s):(t),s,t〔K.这个同态的象是G的子群,也称为单参数子群.如果K二R,则由同态献K~G的连续性可推出它是解析的.如果K=R或C,则对于任意G在点e处的切向量X‘双G,存在唯一的单参数子群献K~G以X作为其在点t=O处的切向量.这里,(t)=cxp tX,作K,Cxp:兀G~G是指数映射(expo理而a】mapp川g).特别地,一般线性群(罗璐阁址篮翔比gro叩)G”GL(n,K)的任一单参数子群形如 ·‘亡,一p‘X一。氰告:·x:如果G是一个具有双边不变的伪Rlerr.nn度量或仿射联络的实L记群,则G的单参数子群是通过单位元e的测地线.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条