说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 非扩张半群
1.
Monotone Hybrid Method for Nonexpansive Mappings and Nonexpansive Semigroups
关于非扩张映像和非扩张半群的单调混杂算法
2.
On the Strong Convergence Theorems for Nonexpansive Semi-Groups in Hilbert Spaces
Hilbert空间中非扩张半群的强收敛定理
3.
Demiclosedness Principle-weak of Nonexpansive Mapping in Banach Space
Banach空间渐近非扩张半群的弱半闭性定理
4.
Modified Viscosity Iterative for Asymptotically Nonexpansive Semigroups in Hilbert Space
Hilbert空间中渐近非扩张半群的修正粘性迭代(英文)
5.
Monotone Hybrid Algorithm for Fixed Points of Nonexpansive Semigroups
单调混杂算法迭代逼近非扩张半群的不动点
6.
Strong Convergence of Viscosity Iterative Process for m-Accretive Operators and Nonexpansive Semigroup
m-增生算子和非扩张半群粘滞迭代算法的强收敛性
7.
Viscosity Approximations for Fixed Point of Asymptotically Nonexpansive Semigroups in Hilbert Space
Hilbert空间中渐近非扩张半群不动点的粘性逼近研究
8.
The Inverse Semigroup Extension of Clifford Semigroup
Clifford半群的逆半群扩张
9.
Ergodic theorem of almost-orbits for asympotically nonexpansive type semigroups under Opial condition
Opial条件下渐近非扩张型半群殆轨道的遍历定理
10.
Fixed Point Theorems for Asymptotically Nonexpansive Type Semigroups in General Banach Spaces
一般Banach空间中渐近非扩张型半群的不动点定理
11.
Group Congruence on Nil-extention of a Clifford Semigroup
一类Clifford半群的nil-扩张上的群同余
12.
Generalized Bruck-Reilly Semigroups, Bisimple and Simple Inverse ω~2-Semigroups;
广义Bruck-Reilly扩张和双单及单逆ω~2-半群
13.
A Type of Idempotent-separating Extensions of Inverse Semigroups
一种逆半群幂等元分离扩张(英文)
14.
Congruences on Nil-extension of a Clifford Semigroup
Clifford半群的诣零扩张上的同余
15.
Simple ideal extension of a group of prime order by a finite commutative nilpotent semigroup on a tree
素数阶群按树上有限交换幂零半群的单纯理想扩张
16.
The Discreteness and Extension of M(?)bius Groups;
M(?)bius群的离散性及扩张
17.
Research of Stability of Nonwandering Operator on Recurrent Set and Products of Semigroups
非游荡算子链回归集上稳定性及半群张量积的研究
18.
In the paper, We have obtain the existence and the theorems for approximations couple fixed point of semi compact nonexpansive mappings in complete metric space.
在完备度量空间获得了半紧非扩张映象的近似耦合不动点的存在性和耦合不动点的逼近定理.