说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 第一积分中值定理
1.
Analyzing Property on the "Middle Point" of the First Mean Value Theorem for Integrals;
第一积分中值定理“中值点”ξ的分析性质
2.
On Extension of the First Mean Value Theorems for Generalized Riemann Integration;
积分第一中值定理在广义Riemann积分中的推广
3.
The Proof about the First Integral Mean Value Theorem;
关于积分第一中值定理的证明和推广
4.
A Further Research on Intermediate Point in the Second Mean Value Theorem for Integrals
积分第二中值定理的中值点ζ的进一步研究
5.
On Asymptotic Approximation of the Second Mean Value Theorem of Integrals;
再论积分第二中值定理中值的渐近性
6.
Asymptotic Properties for the "Middle Point" of the Second Mean Value Theorems of Integral
积分第二中值定理“中间值”的渐近性
7.
On Asymptotic Property of the Mid-Point of Mean Value Theorem for First Form Curvilinear Integral;
第一型曲线积分中值定理“中间点”的渐近性
8.
On the Asymptotic Properties of the Intermediate Point in the Mean Value Theorem for First Form Curve Integral;
关于第一类曲线积分中值定理“中间点”的渐近性
9.
Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior.
研究积分第一中值定理,获得了其中值渐近性的一个新结果。
10.
The Theorem of "Middle Point"in the Second Integral Mean Value;
积分第二中值定理“中间点”的渐近性
11.
STRONG LAW OF THE MEAN FOR MEASURE-UNITYOF THE LAWS OF THE MEAN FOR CALCULUS;
测度强中值定理──微积分中值定理的统一
12.
Asymptoticy and Error Estimation for “the Middle Point”of the Second Integral Mean Value;
第二积分中值定理“中间点”的渐进性及误差估计
13.
The Research for Asymptotic Property of Intermediate Value in the Second Mean Value Theorem for the Integrals
积分第二中值定理“中间点”的渐进性研究
14.
Another Indication of the Simplified Form of Mean Value Theorem for the Integrals
简化形式的积分中值定理另一种表述
15.
Mean - Value theorem for about Lebesgue integral;
关于Lebesgue积分的中值定理
16.
This paper discusses the asymptotic rate of“ mean value point” in second mean vaule theorem for integrals.
本文主要讨论了第二积分中值定理“中值点”的渐近速度.
17.
An Extension of the First Mean Value Theorems for Generalized Riemann Integration;
积分中值定理在广义Riemann积分中的推广
18.
This paper is devoted to studying the asymptotic behavior of the intermediate point in the mean value theorem for first form curve integrals. A general result is obtained.
讨论了第一类曲线积分中值定理“中间点”的渐近性质,得到了更具一般性的新结果。