1.
Two Methods of Distinguishing Convergence and Divergence of Positive Terms Series;
关于正项级数敛散性的两种判别方法
2.
Several Equivalent Forms of Raabe Distinction of the Convergence and Divergence of Positive Term Series;
正项级数敛散性Raabe判别法的几种等价形式
3.
The Popularization and Application of Proportional Expression Discriminance of the Criteria for the Convergence and Divergence in Positive Term Series
正项级数敛散性比式判别法的推广及应用
4.
A Probe into Supplementary Teaching of Two Basic Methods to Judge Convergence and Divergence of Positive Series;
正项级数敛散性两种基本判别法补充教学的一些探讨
5.
A Note on the Convergence about a Kind of Progression;
关于一类正项级数收敛性的一点注记
6.
A Generalization of Convergence Criterion for Positive Series
关于正项级数收敛性判断的一个推广
7.
Teaching Method of Series of Constant Terms and Their Convergence and Divergence;
关于数项级数及其敛散性概念的教学方式
8.
Conclusions on the series’convergence property with the changing of the sequence of item;
与级数项重组后敛散性有关的几个结论
9.
The Relation Between the Rate of Series Convergence & the Appreciation Convergence of Positive Term Series;
级数的收敛速度与正项级数判敛法的关系
10.
A Brief Proof for Convergence and Divergence of Harmonic progression and P progression
调和级数与P级数敛散性的简单证法
11.
The Convergence-Divergence and Estimation Formula of Generalized p-Series;
广义P-级数的敛散性及其估值公式
12.
Convergence Uniform on the Fuzzy Interval Value Functions Series;
Fuzzy区间值函数项级数及其一致收敛性
13.
A Sufficient Condition about Convergence Uniform of Function and a Sufficient and Necessary Condition about Convergence of Positive Series;
函数列一致收敛的一个充分条件和正项级数收敛的一个充要条件
14.
The Uniform Convergence of Fuzzy-valued Sequence and a Series Whose Terms are Fuzzy-valued Function;
Fuzzy值向量函数列及函数项级数的一致收敛性
15.
Convergence and divergence of infinite series depend upon this concept.
无穷级数的收敛性与发散性与此概念有关。
16.
Some Annotations on Course of Proving Disappearance and Divergenceof an Alternate Progression by Leibnize Principle;
使用莱布尼兹审敛法证明交错级数敛散性的几种注记
17.
A Proof of the Guess about the Convergence or Divergence of a Series and the Relevant Theorems;
一个级数敛散性猜想的证明及相关定理
18.
On the Convergence and Devergence of Progression sum from n=2 to ∞[1-α/(π[n])]~n;
关于级数sum from n=2 to ∞[1-α/(π(n))]~n的敛散性