1.
Vector F-Complementarity Problem,General Vector Variational Inequality,and Least Element Problem of Feasible Set;
向量F-互补问题,广义向量变分不等式以及可行集的最小元问题
2.
Minimization Problem for Hermitian Matrices over the Quaternion Field

四元数体上Hermite矩阵的最小化问题
3.
Multicollinearity in Multilinear Regression Models and Partial Least Squares Regression;

多元线性回归中复共线问题及偏最小二乘回归分析
4.
Superconvergence of Least-Squares Mixed Finite Elements for Elliptic Problems;

椭圆问题最小二乘混合有限元方法的超收敛性研究
5.
Fully Discrete Least-squares Mixed Finite Elements Method for the Miscible Displacement of one Incompressible Fluid by Another in a Porous Media
不可压混流驱动问题全离散最小二乘混合元方法
6.
Algebraic method for least squares problems in quaternionic quantum theory

四元数量子理论中最小二乘问题的代数方法(英文)
7.
Research on the Least Square Solution to the Quaternion Matrix Equation AXA~H+BYB~H=C

一个四元数矩阵方程AXA~H+BYB~H=C最小二乘解问题研究
8.
minimal-cost network-flow problem

最小成本网络流程问题
9.
Optimal and Minimum Energy Optimal Tracking Problems;

最优和最小能量最优跟踪问题(英文)
10.
Finite Element Approximations of Optimal Control Problems with State Constraints

状态受限最优控制问题的有限元方法
11.
Superconvergence Property of Finite Element Methods for Parabolic Optimal Control Problems
抛物型最优控制问题有限元超收敛性
12.
Some Problems of the Longest Elements of Classical Weyl Groups

有限反射群(Coxeter群)的最长元的一些问题
13.
LP Minimizing Sequence on Constrained Optimization Problems;

约束最优化问题中的LP最小值序列
14.
Research on Capacity Expansion with Minimum-cost and Maximum Network Flow

一类最小费用最大流的扩张问题研究
15.
An Algorithm for Minimum Vertex Cut Set of Partially Ordered Sets and the Problem of Minimum Cost of Crashed Tasks;
偏序集最小顶点割算法与最小费用赶工问题
16.
A PETROV LEAST SQUARES MIXED FINITE ELEMENT METHOD FOR THE NON-STATIONARY CONDUCTION CONVECTION PROBLEMS
非定常的热传导-对流问题的Petrov最小二乘混合有限元法及其误差估计
17.
System Decoupling and Pole Assignment Problems and Indefinite Least Squares Problem

系统解耦和极点配置问题与不定最小二乘问题
18.
Finally, Chapter eleven covers the special topics of the maximal flow problem, the shortest path problem, and the multicommodity minimal cost flow problem.
最后,第十一章覆盖了特殊主题:最大化流问题、短路径问题和多物最小消费流问题。