1.
Existence of Mild Solutions for Fractional Evolution Equations with Nonlocal Conditions

分数发展方程非局部问题适度解的存在性
2.
Numerical Simulation of the Mixed Finite Element Method for Two Kinds of Evolution Equations;
两类发展方程混合元方法的数值分析
3.
Some Problems in Fractional Differential Equations and Nonlinear Evolution Equations;

分数微分方程和非线性发展方程中问题的研究
4.
Solutions to Nonautonomous Evolution Equations and Fractional Differential Equations

非自治发展方程与分数次微分方程的解
5.
Study on Numerical Difference Schemes and Computational Stability of Nonlinear Evolution Equations;
非线性发展方程的数值差分格式和稳定性研究
6.
Numerical Approximation and Theorical Analysis of Several Kinds of Evolution Equations;

几类发展方程的数值逼近及其理论分析
7.
Analysis and Application of the Expanded Mixed Finite Element Method for Two Kinds of Evolution Equations;
两类发展方程的扩展混合元数值模拟
8.
ASE-I parallel numerical method for a class of nonlinear evolution equation

一类非线性发展方程的交替分段显隐并行数值方法
9.
The Mixed Finite Element Method and Numerical Analysis for Two Kinds of Quasilinear Evolution Equations;
两类拟线性发展方程的混合元方法及其数值分析
10.
Exp-function method and its application to evolution equations

指数函数方法及其在非线性发展方程中的应用
11.
Needless to say, the method of integral equations and the Green's function technique can also be developed.
无庸赘言,也可以发展积分方程法或格林函数技术。
12.
Applications of Manifold Method in Numerical Analyses of Fracture Behavior and Crack Development of Rock Masses;
流形方法在岩体断裂特性与裂纹发展过程数值分析中的应用研究
13.
Analysis and Error Estimates of an H~1-Galerkin Mixed Finite Element Method for Two Kinds of Equation;
两类发展方程的H~1-Galerkin混合有限元数值模拟及其误差分析
14.
Developing College Student's Math Thinking Ability by the Teaching of the Ordinary Differential Equations
以常微分方程教学为契机,发展大学生数学思维能力
15.
Pseudo Almost Automorphic Functions and Applications to Evolution Equations

伪概自守函数及在发展方程中的应用
16.
The Continuity of Free Boundary to the p-Laplacian Equation with Nonlinear Source

具源函数的p-Laplacian发展方程边界连续性
17.
Adomian Decomposition Method for Evolution Equations;

发展方程求解的Adomian分解方法
18.
Parallel GALERKIN Domain Decomposition Procedures for Evolution Equations

发展方程的并行GALERKIN区域分解方法