说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 三对角逆M-矩阵
1.
On Hadamard Product of Tridingonal Inverse M-Matrices
三对角逆M-矩阵的Hadamard积
2.
The inverse of a class of block tridiagonal matrices is investigated.
讨论了一类块三对角矩阵的求逆问题。
3.
Geometric Conditions under Which 2×2 and 3×3 Inverting Matrices Can Be Translated into Diagonal Forms
二、三阶可逆矩阵可以相似对角化的几何条件
4.
Criteria for Generalized Diagonally Dominant Matrices and Nonsingular M-matrix;
广义对角占优矩阵与非奇M-矩阵的判定
5.
The Fast Triangular Factorization Algorithms of Special Matrices and Their Inversion;
特殊矩阵类及其逆矩阵的快速三角分解算法
6.
Inverse eigenvalue problem for real symmetric five-diagonal positive definite matrix;
实对称正定五对角矩阵逆特征值问题
7.
Orthogonal Diagonal Decomposition and Moore-Penrose Inverses of o-Symmetrix Matrix
o-对称矩阵的正交对角分解及Moore-Penrose逆
8.
Diagonally Dominant,Determinant,Order Principal Matrix,Transpose Properties of Generalizations of-matrices
广义M-矩阵对角占优、行列式、转置及顺序主子矩阵的性质
9.
The Lower Bound of the Determinant for Hadamard Product of an Inverse M-matrix and a Positive Definite Matrix;
逆M-矩阵与正定矩阵Hadamard乘积行列式的下界
10.
The Necessary and Sufficient Condition of Inverse M-Matrices
非负矩阵是逆M-矩阵的充要条件及其它
11.
Closure Properties of Inverse M-matrix under Hadamard Product
逆M-矩阵在Hadamard积下的封闭性
12.
The conditions of the existence of M-P inverse of matrices over distributive pseudolattices
分配伪格上矩阵M-P逆存在的条件
13.
The Properties of M-P Inverse of Matrices over Distributive Pseudolattices
分配伪格上矩阵M-P广义逆的性质
14.
The square matrix is called a diagonal matrix.
该方矩阵称为对角矩阵。
15.
Linear Map Preserving Group Inverse on Module of Blocked Upper Triangular Matrices of Pricipal Ideal Domain
主理想整环上三角块矩阵模的保群逆线性算子
16.
The Properties and Inverse Eigenvalue Problem of the Circluant M-matrix and Its inverse;
循环M-矩阵及其逆的性质与逆特征值问题
17.
The authors characterize the forms of additive invertable operators preserving inverse matrix of the upper triangular matrix space over a field which characteristic is not 2 or 3 .
刻划了特征不为2及3的域上的上三角矩阵空间保逆矩阵的可逆加法算子的形式。
18.
This can be extended to nxn tridiagonal matrix with L, U bidiagonal.
把它推广到nxn三对角线矩阵使具有两对角线的矩阵L、U。