说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 句库 -> 协因数阵
1.
Study on Calculating Rigorously Lateral Link-up Error in GPS Tunnel Control Network Based on Variance-covariance Matrix of Coordinates
基于坐标协因数阵的GPS网隧道横向贯通中误差严密计算方法研究
2.
Front National de Concertation
全国协调阵线(协阵)
3.
A Matrix Method for Greatest Common Factor and Least Common Multiple;
最大公因数与最小公倍数的矩阵求法
4.
The Estimates of Regression Coefficient Matrix and Covariance Matrices in the Growth Curve Model with Random Effects;
含有随机效应增长曲线模型回归系数阵与协方差阵的估计
5.
UMVIQLUE of the Covariance Matrix and the Regression Matrix in Growth Curve Model;
增长曲线模型中协差阵与回归系数阵的最优估计
6.
THE PRIOR ESTIMATION FOR COVARIANCE MATRIX OF STRUCTURAL PARAMETERS IN SYSTEM IDENTIFICATION PROCEDURES
系统识别过程中参数协差阵的先验估计
7.
A Study on Numerical Accuracy of Inversion of Covariance Matrix Based on DSP
基于DSP的协方差矩阵求逆的数值问题研究
8.
The array here has the same number of rows as columns, and is called square.
这里的数表有同样的行数与列数,因而叫方阵。
9.
Studies on the Biclustering Algorithms for Gene Microarray Data;
基因微阵列数据的双向聚类算法研究
10.
Gene Microarray Data Analysis Based on Clustering Algorithms;
基于聚类算法的基因微阵列数据分析
11.
Research on Algorithms for Gene Recognition and Microarray Data Recognition;
基因识别和微阵列数据识别算法研究
12.
Two Steps Method and Bootstrap Algorithm for Covariance Parameters for Credibility Regression Models with Moving Average Errors;
具有MA(q)误差线性模型协方差阵参数的分步估计与Bootstrap算法
13.
A semi-parametric estimation method of systemic errors and covariance matrices in Kalman filter
一种Kalman滤波系统误差及其协方差矩阵的半参数估计方法
14.
Research on Cancer Detection with Gene Expression Profiles;
基于DNA微阵列基因表达谱数据的癌症检测研究
15.
Boosting and Its Application in Discriminant Analysis of Microarray Data;
Boosting方法在基因微阵列数据判别分析中的应用
16.
Subspace Classifier for Tissue Classification with Gene Microarray Data-A Non-negative Matrix Factorization Approach;
基于非负矩阵分解的基因数据子空间分类研究
17.
SEARCH OUT THE GREATEST COMMON DIVISOR OF A GROUP OF INTEGERS AND ITS COMBINATION BY MATRIX ELEMENTARY OPERATIONS;
用矩阵初等变换求最大公因数及组合的方法
18.
Structure of the GCD Matrix on Direct Product of the Positive Integers
基于正整数直积上最大公因子矩阵结构的探讨