1) surface electric field

表面电场
1.
Based on the elliptic shape characteristic of metallurgical junction boundary formed by lateral diffusion and vertical diffusion,the surface electric field distribution with a single floating field limiting structure is discussed.
基于横向扩散与纵向扩散构成的冶金结边界为椭圆形这一特点,讨论单场限环结构表面电场强度的分布,给出表面电场强度、主结及环结分担电压的解析表达式。
2.
Furthermore,the surface electric field in this structure reaches nearly ideal uniform distribution due to the additive ele.
双面阶梯的电荷积累作用使其纵向电场突破了传统上受界面电荷为零限制的3倍关系,埋氧层的电场可以高达200V/μm;而且双面阶梯对表面电场的调制作用使其表面电场达到近乎理想的均匀分布。
3.
The self-heating effect is alleviated as a result of the silicon window and the surface electric field are optimized by different substrate electric field modulation.
提出了一种埋空隙PSOI(APSOI)RESURF器件结构,此结构利用空隙相对低的介电系数,在器件纵向突破了传统SiO2埋层的耐压关系,提高了击穿电压;硅窗口的存在缓解了有源区的自热效应;不同衬底的场调制作用进一步优化了表面电场分布。
2) surface electrical field

表面电场
1.
Analytical model for the surface electrical field distribution of double RESURF device with surface implanted P-top region;
表面注入P-top区double RESURF功率器件表面电场模型
2.
Analytical models for the surface electrical field and temperature distributions of novel PB-PSOI devices
新型PB-PSOI器件表面电场和温度分布模型研究
3.
In this paper,an analytical model for the surface electrical field and potential distributions of RFP LDMOS is presented.
提出具有电阻场板(Resistive field plate,RFP)硅基LDMOS表面电场和击穿电压解析模型。
3) electric field strength

表面电场
1.
Therefore,in studying the diffusion, adsorption and desorption mechanism of heavy metals in soil, the evaluation of the influence of electric field strength from soil particle surface on hea.
本文采用流恒法对黄壤和中性紫色土表面电荷总量、表面电位、表面电荷密度、表面电场强度以及比表面积进行了测定和计算,并进行比较分析;采用流恒法研究Zn~(2+)在两种土壤中的吸附/解吸特征,分析吸附/解吸的动力学过程。
4) electromagnetic fields/surface quality

电磁场/表面质量
5) peak surface electric field

表面电场峰值
6) RESURF

降低表面电场
补充资料:变电所工频电场
变电所工频电场
electric field of substation
b一ond一onsuo gongPln dlonehong变电所工频电场(eleetrie field of substation) 变电所运行时各种带电导体上的电荷和在接地架构上感应的电荷在变电装置所处广大空间产生的工颇电场。由于变电所内带电导体纵横交错,带电设备和接地架构多种多样,变电所内的工频电场是一个复杂的三维场分布,它的表征、计算和测量较输电线路复杂。翰电线下离地Zm以内电场变化很小,可以认为是均匀的,一般可用离地1.sm处场强来表征该点电场水平。变电所内大部分区域,由于带电体和接地架构同时并存,离地Zm以内电场变化很大,为准确的表征某点电场水平,需要同时给出地面、离地0.sm和离地1.sm三个场强值。对330 kV及其以上电压等级的变电所,工频电场的限值是设计时应考虑的主要条件之一。为了预计新建变电所电场水平和分布,一般采用将变电所按一定比例缩小,所加电压也按比例缩小,用模拟的方法来预测,也可采用计算的方法。表征变电所的电场分布,可给出地面或离地面一定高度的等场强线、大于某一场强的高场强区或给出典型间隔和设备纵向或横向电场分布。 变电所工作人员接近带电高压设备的机会多,场强限值除要考虑暂态电击和稳态电击外,还要考虑电场长期作用可能的生态效应。但由于变电所工作人员通常均具有防止暂态和稳态电击知识,且每天在较高电场中停留的时间不长,因此各国都将变电所内的允许工频电场定得比线路邻近居民区和跨越公路处的要高。对运行人员经常巡视或检测必经的地方,一般规定为小于8 kV/m,其他地方则不大于10 kV/m,少数地区允许最大场强为10~15kV/m。而变电所围墙处场强则不大于skV/m。为满足这些要求,除适当提商带电体对地高度外,有时还采用合理安排带电体的排列以及并列或重叠回路的相序等措施,从结构布t上减小地面电场。500 kV及以上的新变电所投运后,一般都要对变电所内电场进行一次全面测量,绘出高场强区的范围和电场分布。为避免火花放电引燃可燃气体,在变电所的工频电场区内禁止进行加人或取出汽油的作业。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条