1)  combinatorial proof
					
	
					
				
				
	
					
				组合证明
				1.
					In this paper,a direct combinatorial proof of the sum of squares is presented by employing mathematical induction.
						
						文章首先采用数学归纳法给出了前n项平方和封闭形式的组合解释,从而给出了平方和恒等式的一个直接的组合证明,解决了Benjamin和Orrison[1]在2002年提出的问题。
					2.
					In this paper,the author gives simpler combinatorial proofs of two q-cubes using integer partition,which were given by Garrett,Hummel and Zhao Guangjun.
						
						Garrett和Hummel在2004年给出了立方和恒等式的一个q-模拟,接着赵光军在2005年又给出了立方和恒等式的另一个q-模拟,文章从分拆的角度给出了这两个q-模拟一个更简单的组合证明。
					
					2)  assembling proof
					
	
					
				
				
	
					
				组合性证明
				1.
					In the famous equation of DAWX,although it s general proof is clear,it s assembling proof is indefinite.
						
						在组合数学中著名的恒算式———大卫星恒等式 ,它的数学证明比较清晰 ,但其组合性证明较为模糊 ,本文的主要目标就是对其组合性证明作一些有益的探讨。
					
					3)  combinatorics/mechanized proof
					
	
					
				
				
	
					
				组合数学/机械化证明
			
					5)  justify
					[英]['dʒʌstɪfaɪ]  [美]['dʒʌstə'faɪ]
					
	
					
				
				
	
					
				证明合理
			
					6)  synthetic proof
					
	
					
				
				
	
					
				综合证明
	补充资料:组合模式或组合振动
		分子式:
CAS号:
性质:在红外光谱中通常出现很多的弱吸收,组合模式或组合振动系指对应于两个或多个基本振动频率之和起源,它的弱吸收于多原子分子振动态相互作用的振子的非谐性。与基频振动及倍频所引起的吸收相比,这些吸收是比较弱的。
		
		CAS号:
性质:在红外光谱中通常出现很多的弱吸收,组合模式或组合振动系指对应于两个或多个基本振动频率之和起源,它的弱吸收于多原子分子振动态相互作用的振子的非谐性。与基频振动及倍频所引起的吸收相比,这些吸收是比较弱的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
	参考词条