1) the adjacent vertex-distinguishing total coloring number
邻点可区分的全色数
2) adjacent strong total chromatic number of graphs
邻点可区别的全染色数
3) adjacent strong vertex-distinguishing total coloring
邻点可区别的强全色数
1.
Suppose f is a proper total coloring of G which use k colors,for uv∈E(G), it s satisfied C(u)≠C(v),where C(u)={f(u)}∪{f(v)|uv∈E(G)}∪{f(uv)|uv∈E(G)}, then f is called a k adjacent strong vertex-distinguishing total coloring of graph G(k-ASVDTC for short)and χ ast (G)=min{k|k-ASVDTC of G} is called the chromatic number of adjacent strong vertex-disting.
设 f为用 k色时 G的正常全染色法 ,对 uv∈ E(G) ,满足 C(u)≠ C(v) ,其中C(u) ={ f(u) }∪ { f(v) |uv∈ E(G) }∪ { f(uv) |uv∈ E(G) } ,则称 f 为 G的 k邻点可区别的强全染色法 ,简记作 k- ASVDTC,且称 χast(G) =min{ k|k- ASVDTC of G}为 G的邻点可区别的强全色数 。
4) adjacent vertex-distinguishing total coloring
邻点可区分的全染色
1.
In this paper,the adjacent vertex-distinguishing total coloring numbers of generalized Petersen graph are presented.
邻点可区分的全染色是在正常全染色的定义上,使得相邻顶点的色集不同。
2.
The adjacent vertex-distinguishing total coloring numbers of graphPn,Sn,their Hajós sum and part of the substituted graphs of vertices are given in this paper.
邻点可区分的全染色是在正常全染色的定义上,使得相邻顶点的色集(C(v))不同。
5) adjacent vertex distinguishing total coloring and chromatic number
邻点可区别的全染色和全色数
6) vertex-edge adjacent vertex-distinguishing total coloring
点边邻点可区别全色数
1.
f is a mapping from V(G)∪E(G) to {1,2,…,k},then it is called the vertex-edge adjacent vertex-distinguishing total coloring of G if uv∈E(G),f(u)≠f(uv),f(v)≠f(uv),uv∈E(G),C(u)≠C(v),and the minimum number of k is called the vertex-edge adjacent vertex-distinguishing total chromatic number of G,where C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的点边邻点可区别全染色,且称最小的数k为图G的点边邻点可区别全色数。
补充资料:思北邻韩二翁西邻因庵主南邻章老秀才
【诗文】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条