说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Rudin-Shapiro函数
1)  Rubin-Shapiro function
Rudin-Shapiro函数
2)  ShapiroRudin sequence
Shapiro-Rudin序列
3)  Piatetski-Shapiro prime
Piatetski-Shapiro素数
1.
We study Waring-Goldbach problem in the set of Piatetski-Shapiro prime and estimates of maximal divisor of k-th power in short intervals.
在第一章中,主要研究了素变数方程 N=p_1~2+…+P_s~2在Piatetski-Shapiro素数集中的解数问题,其中S≥5,N为充分大的正整数。
4)  Rudin technique
Rudin法
5)  Shaprio-Rudin sequence
Shaprio-Rudin序列
6)  Rudin property
Rudin性质
1.
For a general subset system Z, the Rudin property is denned and its characterization in mapping forms are given.
对一般子集系统 Z,引入了 Rudin性质,给出了它的映射式刻划,作为拟连续偏序集和Z-连续偏序集的公共推广,引入了拟Z-连续Domain的概念,讨论了拟Z-连续Domain的基本性质,特别地,给出了 Rudin性质及其映射式刻划在拟 Z-连续Domain方面的若干应用,将关于拟连续偏序集的主要结果推广至了拟 Z-连续 Domain情形。
补充资料:高斯函数模拟斯莱特函数
      尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
  
  
  式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
  
  
  其变量与STO有相似的定义;Ngi是归一化常数:
  
  
  rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
  
  ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条