1) Bergman-Carleson measure

Bergman-Carleson测度
1.
In this paper,we study some integral criteria of weighted analytic Lipschitz functions by using higher derivatives on the unit disk of the complex plane,and give the associated characterization in terms of Bergman-Carleson measures.
研究了单位圆盘上加权解析Lipschitz函数关于高阶导数的若干积分特征,并给出了它的Bergman-Carleson测度特征。
2) vanishing Bergman-Carleson measure

消失Bergman-Carleson测度
3) Carleson measure

Carleson测度
1.
Inequality to describe double Carleson measure and description of Carleson inverse inequality;
双Carleson测度的积分不等式及对Carleson逆不等式的刻画
2.
Carleson measure and Carleson measure in weighted Bergman space;

Carleson测度与加权Bergman空间上的Carleson测度
3.
The bounded property of a operator and the description of Carleson measure with BMO_ function;
算子有界性及BMO_函数对Carleson测度的刻画
5) K-Carleson measure

K-Carleson测度
1.
In this paper,we use K-Carleson measure to discuss the bounded composition operators from Bα(Bα0) to QK and the bounded and compact composition operators from Bα to QK,0.
用K-Carleson测度刻画了Bα(B0α)到QK的复合算子的有界性,以及Bα到QK,0的复合算子的有界性和紧性。
2.
The second part of the paper gives the distance formulas from Bloch functions to some Q_K-type spaces,which are characterized by using the K-Carleson measure.
第二部分利用K-Carleson测度刻划出了Bloch函数到Q_K型函数空间的距离,其中包含本文的主要定理及其证明。
6) η-Carleson measure

η-Carleson测度
1.
Some sufficient and necessary conditions for the composition operators between different Privalov spaces and different weighted Bergman-Privalov spaces to be metrically bounded or metrically compact are given by usingη-Carleson measure, and some function theoretic characterizations are also given.
利用η-Carleson测度给出了单位球上不同Privalov以及不同加权Bergman-Privalov空间之间的复合算子是度量有界或度量紧的充要条件,并给出了一些函数理论方面的刻画。
补充资料:Bergman核函数
Bergman核函数
Bergman kernel function
价飞man核函数fBe吧m助ker配l物.比.;反p.知翅‘p呻阳哪,1,灰r娜an撼(Ber脚an比mel) 一个具有再生核性质且定义在任意区域D〔C”_上的复变量函数,在此区域内存在关于Lebesgue测度d。的L:(D)类中不为O的全纯函数f.Ber脚an核函数是由5.Berg刀an引进的!1]这些函数f的集合构成具有标准正交基{伞l,叭,…}的Hilbert空间LZ,*(D)〔LZ(D);LZ、(DI二LZ(D)自o(D),其中O(D、是全纯函数的空间.函数 、l)(:.灼一K、:.、)一全、(:)丽, 二{ :二仁L,、几)、夕然(夕.…,象)称为D的Ber卿an核函数(或简称核函数)、右边的级数在D的紧子集上一致收敛,并且对每一固定的亡任D属于L:*(D),此和不依赖于标准正交基{码}的选择.Bergman核函数依赖于2”个复变量并定义在区域D‘D C=C’”上;它具有对称俘季
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条