说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 单侧算子权移位
1)  unilateral operator weighted shift
单侧算子权移位
1.
If {A_k}_(k≥0) be a uniformly bounded sequence of Invertible operators on H, H_n=H,(?)=sum from n=0 to +∞(⊕H_n) the unilateral operator weighted shift S on (?) with the weightedsequence {A_k}_(k≥0) is defined as S(x_0,x_1,x_2,…)=(0, A_0x_0,A_1x_1,…), (x_n)_n∈(?), denoted.
若{A_k}_(k≥0)是H上一致有界的可逆算子序列,设H_n=H,(?)=sum from n=0 to +∞(⊕H_n),(?)上具有算子权序列{A_k}_(k≥0)的单侧算子权移位S定义为S(x_0,x_1,x_2,…)=(0,A_0x_0,A_1x_1,…),(x_n)_n∈(?),记为S~{A_k}_(k≥0)。
2)  Unilateral weighted shifts
单侧加权移位算子
3)  Unilateral operator weighted shifts
单边算子权移位
4)  Bilateral weighted shifts
双侧加权移位算子
5)  the unilateral (weighted) backward shift
单边(加权)后移位算子
6)  weighted backward shift operators
单边加权移位算子
1.
Considering the weighted backward shift operators with constant-weight and using a relative result on similarity,we gave a complete classification under the sense of topological conjugacy for this class of operators.
考虑权为常数的单边加权移位算子,利用相似性的一个结果,给出了这类算子的完全拓扑共轭分类。
补充资料:移位
分子式:
CAS号:

性质:见易位

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条