1) unilateral operator weighted shift

单侧算子权移位
1.
If {A_k}_(k≥0) be a uniformly bounded sequence of Invertible operators on H, H_n=H,(?)=sum from n=0 to +∞(⊕H_n) the unilateral operator weighted shift S on (?) with the weightedsequence {A_k}_(k≥0) is defined as S(x_0,x_1,x_2,…)=(0, A_0x_0,A_1x_1,…), (x_n)_n∈(?), denoted.
若{A_k}_(k≥0)是H上一致有界的可逆算子序列,设H_n=H,(?)=sum from n=0 to +∞(⊕H_n),(?)上具有算子权序列{A_k}_(k≥0)的单侧算子权移位S定义为S(x_0,x_1,x_2,…)=(0,A_0x_0,A_1x_1,…),(x_n)_n∈(?),记为S~{A_k}_(k≥0)。
2) Unilateral weighted shifts

单侧加权移位算子
3) Unilateral operator weighted shifts

单边算子权移位
4) Bilateral weighted shifts

双侧加权移位算子
5) the unilateral (weighted) backward shift

单边(加权)后移位算子
6) weighted backward shift operators

单边加权移位算子
1.
Considering the weighted backward shift operators with constant-weight and using a relative result on similarity,we gave a complete classification under the sense of topological conjugacy for this class of operators.
考虑权为常数的单边加权移位算子,利用相似性的一个结果,给出了这类算子的完全拓扑共轭分类。
补充资料:移位
分子式:
CAS号:
性质:见易位
CAS号:
性质:见易位
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条