1) Differential Freqeuncy Shift Estimation

差分频偏估计
2) carrier frequency offset estimation

载频偏差估计
3) separate bias estimation

偏差分离估计
1.
This paper presents a separate bias estimation algorithm for a class of nonlinear time varying stochastic systems with colored noise, the bias may be nonlinear, random and time varying with some unknown changing law.
本文给出了有色噪声干扰下的一类非线性时变随机系统的伪偏差分离估计方法。
4) frequency offset estimation

频偏估计
1.
A Low-Complexity Blind Carrier Frequency Offset Estimation with Virtual Subcarriers for MIMO-OFDM Systems;
MIMO-OFDM系统中基于虚子载波的低复杂度盲频偏估计
2.
Heter-cycle abutted cyclic prefix based OFDM frequency offset estimation;

一种基于双周期结构的OFDM频偏估计方法
3.
ESPRIT based frequency offset estimation for interleaved OFDMA uplink systems;

基于ESPRIT算法的子载波交织型OFDMA上行链路频偏估计
5) frequency estimation

频偏估计
1.
A WLAN 802.11b frequency estimation algorithm based on preamble;

基于前导码的WLAN 802.11b频偏估计算法
2.
The comparison of the frequency estimation arithmetic in the burst-mode transmission;

突发通信中的频偏估计算法比较
3.
An open-loop frequency estimation algorithm is proposed based on the received signal s second-order cyclic statistics in this paper (The received signal is second-order cyclic stationary).
本文利用接收信号(为二阶周期平稳信号)的二阶循环平稳特性推导了一种开环频偏估计算法,此算法的特点为:(1)接收信号为MPSK调制信号;(2)频偏估计过程不需要训练序列;(3)适用于任何分布的加性平稳噪声(白噪声及有色噪声)。
6) bias estimation

偏差估计
1.
Research on joint data association and bias estimation method in radar networks;

雷达组网中联合数据关联与偏差估计方法研究
2.
Taking Earth Centered Earth Fixed(ECEF) coordinate as common grid,this paper discusses bias estimation in 3-D sensor network according to the superposition of the same target in different sensors,the linearized measurement equation of range,range gain,azimuth and elevation deviation of each sensor can be derived via the first order Taylor series expansion.
采用地心地固坐标系作为统一坐标系,研究了3-D传感器组网中的偏差估计问题,根据同一目标位置在各个传感器探测中的迭合条件,运用一阶泰勒展式推导出各个传感器的距离、距离增益、方位角、仰角偏差的线性化公式,利用最小二乘法在线估计出各个偏差量,并实时进行修正,仿真结果验证上述方法的有效性。
补充资料:无偏估计量
无偏估计量
unbiased estimator
无偏估计里【训挽”目巴山旧奴甘;uecMe山.。二oue~] 数学期望等于被估计的量的统计估计最(statist派destin卫tor).假设随机变量X取值于样本空间(王,黔,尸。)(e任0);拟根据X的实现估计函数j:0~。,f是从参数集O到某个集合O的映射;选统计量T=T(X)作函数f(0)的估计量.如果对于一切e‘O,统计量T满足 〔。{T}一丁T(二)己尸。(二)一f(。), 王则称T为函数f(0)的无偏估计量(皿b此ed estjlll主-tor).常称无偏估计量无系统误差. 例1.设随机变量X.,…,戈的数学期望同为日,即 E。{X,}二·一〔。{Xn}二口.这时统计量 T一c IX:+…+几戈,cl十…+c。一l是数学期望日的无偏估计量.特别地,观测值的算术平均值X二(x、+…十戈)/n是口的无偏估计量.在该例中f(口)三小 例2.设XI,…,戈是独立服从同一概率分布的随机变量,其分布函数为F(x),即 户{X,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条